The purpose of performing this lab was to find the specific heat capacity of an unknown metal.
The purpose of this experiment is to try to find the original temperature of the hot water in the heater using the 60 degrees C thermometer. Use your 60°C thermometer, and any materials available in your laboratory, to determine the temperature of the water in the coffee pot. During this experiment we calculated the original temperature of a heater after it had been cooled down, and we did this by measuring hot, cold, and warm water, with a thermometer that had tape covering 60 degrees and up. When preformed each of these experiments with each temperature of water, plugging them into the equation (Delta)(Ti – hot – Tf) T Hot x Cp x Mass(Cold) = (Delta)(Tf – Ti – Cold) T Cold x Cp x Mass(Hot)(d
The purpose of the lab is to understand how to calculate the calorimeter constant by using a calorimeter. This allows us to analyze the heat reaction of different substances. Calorimetry is a word that comes from both Latin and Greek. The prefix “Calor” in Latin signifies heat and the suffix “metry” in Greek means measuring. Therefore the word itself translates to measuring heat. Joseph Black, was the first scientist to recognize the difference between heat and temperature. Energy is always present in chemical and physical changes. The change of energy that occurs when there is a chemical change at constant pressure is called enthalpy. Enthalpy changes , as well as physical and chemical changes, can be measured by a calorimeter. The energy that is released or absorbed by the reaction can be either absorbed or released by the insulating walls of the instrument.
To calibrate the thermometer that I bought from Irvine Valley College, I followed the steps given by my Astronomy 20 teacher, Roy McCord. First, I purchased distilled water. I then found a reliable source, to research the point at which water freezes and boils in Celsius. Water freezes at 0°C and boils at 100°C.
During the experiment I will be taking a number of measurements, I will firstly take the initial temperature of the water and initial mass of the alcohol I will then burn the alcohol until an increase in temperature of 20oc has occurred in the water I will then reweigh the alcohol.
It was concluded in this lab that the metal cylinder was Iron and the metal plate was Aluminum. Looking at a chart of densities and using the results to verify, concluded this. The percent error was low for most objects except the metal plate. Next time measuring should be done more carefully. However this could have been caused by human error or imprecise equipment. The density of water at 23°c should be approximately .9975g/ml. This measurement was found in a chart, along with the other densities used to find the percent error. The process of finding density was successfully completed without any problems. The procedure and calculations went smoothly and overall this lab was successful.
Title: Observing what temperature the water must be at the undergo a phase change
Introduction: A phase change is a result from the kinetic energy (heat) either decreasing or increasing to change the state of matter (i.e. water, liquid, or gas.) Thus saying, freezing is the phase change from a liquid to a solid which results from less kinetic energy/heat. Also, melting is the phase change from a solid to a liquid which results from adding kinetic energy/heat. So, the freezing and melting point of something is the temperature at which these phase changes occur.
After finishing the trials, our group subtracted the mass of the glassware without water from the mass of the glassware with water in order to find the mass of the water in grams. Then, we divided the mass of the water by the density(g/cm^3) of the water in order to find the volume (mL). An example calculation from the 5.00mL pipet is: (4.9285mL+4.8839mL+4.9367mL+4.9265mL+4.9134mL)/5 = 4.9178. In most cases, the temperature of the water was around 23 degrees celsius, making the density about .998408 g/cm^3 for many of the trials. The densities we used were found online. The next calculations we performed were to determine the average volume of the water in each person’s five trials by adding up all of the volumes(mL) and dividing that number by five. Using the average volume, we then calculated the
The thermometer, containers, and iron ball were secured of any possible contaminants. The stopwatch was calibrated and checked to be correctly measuring the time in seconds and milliseconds, by comparison with other stopwatches. The thermometer was checked to be accurately measuring the temperature of lukewarm water, and was al...
4. Pour about 300mL of tap water into the beaker. Set up a hot-water bath using a hot plate, retort stand, and thermometer clamp. Alternatively, use a Bunsen burner, retort stand, ring clamp, thermometer clamp, and wire gauze.