Conception
Nebula as Star Nurseries
Stars are born in the interstellar clouds of gas and dust called nebulae that are primarily found in the spiral arms of galaxies. These clouds are composed mainly of hydrogen gas but also contain carbon, oxygen and various other elements, but we will see that the carbon and oxygen play a crucial role in star formation so they get special mention. A nebula by itself is not enough to form a star however, and it requires the assistance of some outside force. A close passing star or a shock wave from a supernova or some other event can have just the needed effect. It is the same idea as having a number of marbles on a trampoline and then rolling a larger ball through the middle of them or around the edges. The marbles will conglomerate around the path of the ball, and as more marbles clump together, still more will be attracted. This is essentially what happens during the formation of a star (Stellar Birth, 2004).
If the nebula is dense enough, certain regions of it will begin to gravitationally collapse after being disturbed. As it collapses the particles begin to move more rapidly, which on a molecular level is actually heat, and photons are emitted that drive off the remaining dust and gas. Once the cloud has collapsed enough to cause the core temperature to reach ten-million degrees Celsius, nuclear fusion starts in its core and this ball of gas and dust is now a star. It begins its life as a main sequence star and little does it know its entire life has already been predetermined.
Although this may sound like a simple enough process there are actually several variables that must be just right for birth to happen. For one, the mass of the collapsing particles is crucial and ther...
... middle of paper ...
...e times the mass of the sun. In this case gravity is overwhelmingly strong and is able to crush the neutron star towards zero mass. The result is a black hole with a gravitational field strong enough to not even let light escape (Brusca, 2004).
Bibliography
Brusca, Stone. Cosmos, Physics 304. Arcata, CA: Dr. Stone Brusca, 2004.
Miller, Coleman M. Introduction to neutron stars. University of Maryland. 22 Nov. 2004
Star death: post- main sequence evolution of stars. 22 Nov. 2004
Stellar Birth. 11 Jan. 2004. 22 Nov. 2004
Tyler, Pat. Supernova. NASA’s Heasarc: Education and Public Information. 26 Jan. 2003. 22 Nov. 2004
When itBetelgeuse cannot fuse anymore anything over iron, the star will not have enough energy to make heat. Eventually, the core will collapse. When Betelgeuse collapses, it is so strong and powerful that it causes the outer layers to rebound. With the rebound it will have an explosion, which is called a Supernova (Type two). The explosion has so much energy and power that the temperature becomes really hot. The temperature is so hot that it can use the fusion process much heavier than iron. The elements that were given off from the explosion are sent throughout space and are now new nebula. When the Supernova is done, it has left behind a star called a Neutron star. They form when atoms of the core of a dead star are crushed together and the end result produces neutrons. The neutrons are with electrons that are degenerate on the surface. Many Neutron stars have magnetic fields and they give off strong waves of radiation from their poles. These types of Neutron Stars are known as Pulsars.
Dyson, Marianne J. Space and Astronomy: Decade by Decade. New York: Facts on File, 2007. 14+. Print.
However, galactic interactions do often share many characteristics. The most notable feature associated with interacting galaxies is often the “starburst” phenomenon. A starburst is an extremely high rate of star formation over part or all of a galaxy over a cosmologically short period of time (possibly a few billion years as opposed to several billion years). Galaxy interactions cause gravitational instabilities in interstellar gas clouds, which compress the gas in the clouds and trigger star formation (Mouri 2003). When astronomers look at an ongoing starburst in a distant galaxy, they see the starburst as a bluer region than the surrounding parts of the host galaxy. That is due to the extremely hot and energetic, yet short lived, O-type stars produced in the burst, which outshine all of the other stars being born around them as well as the older, redder stars that populate the galaxy.
Nebula away so that it can avoid certain things. In the short story, “The Star,” the priest stated,
Supernovas are explosions from old stars at the end of their life cycles. Their explosions are the largest and most energetic things in the Universe and can outshine their entire home galaxies. Supernovas can also provide beautiful viewing as well. Anyone in 1572, for a few weeks, could look up at the sky and see a bright “New star” in the sky.
The Orion Nebula is a spectacular sight. Consequently, it has been a preferred target of the Hubble Space Telescope (HST) over recent years. The HST has provided a great deal of insight into the complicated process of star formation. In June of 1994, C.
Solar nebula is a rotating flattened disk of gas and dust in which the outer part of the disk became planets while the center bulge part became the sun. Its inner part is hot, which is heated by a young sun and due to the impact of the gas falling on the disk during its collapse. However, the outer part is cold and far below the freezing point of water. In the solar nebula, the process of condensation occurs after enough cooling of solar nebula and results in the formation into a disk. Condensation is a process of cooling the gas and its molecules stick together to form liquid or solid particles. Therefore, condensation is the change from gas to liquid. In this process, the gas must cool below a critical temperature. Accretion is the process in which the tiny condensed particles from the nebula begin to stick together to form bigger pieces. Solar nebular theory explains the formation of the solar system. In the solar nebula, tiny grains stuck together and created bigger grains that grew into clumps, possibly held together by electrical forces similar to those that make lint stick to your clothes. Subsequent collisions, if not too violent, allowed these smaller particles to grow into objects ranging in size from millimeters to kilometers. These larger objects are called planetesimals. As planetesimals moved within the disk and collide with one another, planets formed. Because astronomers have no direct way to observe how the Solar System formed, they rely heavily on computer simulations to study that remote time. Computer simulations try to solve Newton’s laws of motion for the complex mix of dust and gas that we believe made up the solar nebula. Merging of the planetesimals increased their mass and thus their gravitational attraction. That, in turn, helped them grow even more massive by drawing planetesimals into clumps or rings around the sun. The process of planets building undergoes consumption of most of the planetesimals. Some survived planetesimals form small moons, asteroids, and comets. The leftover Rocky planetesimals that remained between Jupiter and Mars were stirred by Jupiter’s gravitational force. Therefore, these Rocky planetesimals are unable to assemble into a planet. These planetesimals are known as asteroids. Formation of solar system is explained by solar nebular theory. A rotating flat disk with center bulge is the solar nebula. The outer part of the disk becomes planets and the center bulge becomes the sun.
The Big Bang Theory is one of the most important, and most discussed topics in cosmology today. As such, it encompasses several smaller components that attempt to explain what happened in the moments after creation, and how the universe we know today came from such a fiery, chaotic universe in the wake of the Big Bang. One major component of the Big Bang theory is nucleosynthesis. We know that several stellar phenomena (including stellar fusion and various types of super novae) are responsible for the formation of all heavy elements up through Plutonium, however, after the advent of the Big Bang theory, we needed a way to explain what types of matter were created to form the earliest stars.!
Zimmerman, Robert. "The Great Supernova Race." Sky & Telescope 126.4 (2013): 16. MasterFILE Premier. Web. 7 Apr.
The Big Bang, the alpha of existence for the building blocks of stars, happened approximately fourteen billion years ago. The elements produced by the big bang consisted of hydrogen and helium with trace amounts of lithium. Hydrogen and helium are the essential structure which build stars. Within these early stars, heavier elements were slowly formed through a process known as nucleosynthesis. Nucleosythesis is the process of creating new atomic nuclei from pre-existing nucleons. As the stars expel their contents, be it going supernova, solar winds, or solar explosions, these heavier elements along with other “star stuff” are ejected into the interstellar medium where they will later be recycled into another star. This physical process of galactic recycling is how or solar system's mass came to contain 2% of these heavier elements.
Redd, Nola T. "Space and NASA News – Universe and Deep Space Information | Space.com." Space.com. Space.com, 08 Mar. 2013. Web. 26 Mar. 2014. .
The idea behind the Solar Nebular Hypothesis is that the solar system was condensed from an enormous cloud of hydrogen, helium, and a few other elements and rocks. Around five billion years this cloud of materials began to spin and contract together into a disk shape under their own gravitational forces. The particles started combined together, protoplanets, to eventually form planets. A great mass of the material eventually began to form together, protosun, and make up the sun.
Black holes are usually formed after supernova explosions, in which the remnants of this explosion implodes within itself. It will continue to condense to a volume of zero and infinite density. This is known as a singularity.
Supernovae occur when a star can no longer resist the force of gravity and collapse. There are two types of supernovae. Type II supernovae have hydrogen absorption lines in their light spectrum. Type II supernovae occur in stars with masses much greater than our sun. They are an implosion-explosion event. During fusion, outward pressure is created to balance the inward pull of gravity. However once the star runs out of fuel, the star will expand into a red supergiant. While the star is still a red supergiant, the core become hotter and denser. During this time more nuclear reactions occur, delaying the collapse of the core. However once the core is out of fuel this time, it has nothing left to fuse and the core collapses. The implosions, or collapse, of the iron cores of massive stars are caused from extreme pressure. When the core collapses, the core will rise to over 100 billion degrees. The energy from the iron crushing together will be overcome by gravity at first, but will bounce back through the layers of the star. When it reached the hydrogen envelope of the star, it explodes and a shock wave occurs. Many heavy elements are released by the explosion and are dispersed throughout the galaxy to form new stars