Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
fossil fuels impact on society
stirling engine project report
stirling engine project report
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: fossil fuels impact on society
The Sterling heat engine was invented by Robert Stirling in 1816. He was a reverend in the Scotland who built heat engines in his home workshop. His Heat Economiser was patented in 1816. The engine incorporates ideas of reduced fuel consumption compared with the current steam engines.
Further development to the engine happened when his younger brother suggested using pressurized gas as the working fluid. Additional patents in 1827 and 1840 were for improvement to the design.
A closed cycle with external heating engine that has a power piston, a displacer to move the enclosed air between the hot and cold ends a regenerator in now called a Stirling Cycle Engine.
Air in the engine is cyclically heated (by an alcohol burner) and expands to push the power piston (shown in blue) to the right. As the power piston moves to the right, the yellow linkage forces the loose-fitting, red "piston" (on the left half of the machine) to displace air to the cooler side of the engine. The air on the cool side loses heat to the outside world and contracts, pulling the blue piston to the left. The air is again displaced, sending it back to the hotter region of the engine, and the cycle repeats.
Stirling Engines work on a temperature difference between the hot end and the cooling fins. Any source of heat could be used. Refrigerant on the cold end may be needed for long term use or if the barrier conducts too much heat. On a finely machined Stirling engine, the temperature difference can be as low a just a few degrees- the heat from your hand can be enough to power the flywheel.
Stirling Engines are most commonly found in waste heat recovery systems. Power plants that generate hot water could be used to power several heat engines for no additional cost after setup. However, the power generated by these engines would be only a fraction of what the steam turbine is putting out. Set up costs are high enough that waste heat recovery systems are not too common.
Interests in heat engines may increase because they minimize the cost per unit energy being produced. For large scale power production, Stirling Engines are too expense to make. Given current energy shortages and rising environmental concerns, heat engines may become more attractive.
The most common application of Stirling Engines is water pumping. Even Robert Stirling modified his engine to pump water from a stone quarry.
At the age of twenty-four, Norbert Rillieux was a teacher of applied mechanics at a school in Paris. In 1830, he put out a series of papers about steam economy and steam engine work, a prelude to his invention involving steam. In fact, it was during the time that he was writing these papers, most likely, that he created his theory about multiple effect evaporation. Between 1884 and 1854, he created the Rillieux apparatus, a revolutionary invention. In 1864, he patented his first model, and advanced the system for eight more years, and received more patents. It took him ten years to create the final model because he was black, and there were prejudices he had to deal with in addition to his invention.
His first invention was a lubricator for steam engines, U.S. 129,843, which issued on July 12, 1872. The invention allowed machines to remain in motion to be oiled; his new oiling device revolutionized the industrial machine industry.
The Wankel rotary engine named after the designer, Felix Wankel, was engineered in the early 1930’s. The rotary engine was unlike the conventional four stroke internal combustion engines and lacked the need for pistons, valves and camshafts. With only three moving parts involved in the design, this engine showed great promise in reliability and efficiency. The first Wankel rotary model was shown in 1960, not as an engine, but as a pump drive. Instead of the very complicated system involved in a conventional reciprocating piston engine, the wankel engine incorporated triangular “rotors” (see figure 1) that rotate within an epitrochoidal chamber around an eccentric shaft. Not only is this engine much more simple (only 3 moving parts rather
The image of a self-propelled vehicle dates back around the early thirteenth century. Europe is the birthplace of the automobile, but it was adopted by America. Roger Bacon had a vision of cars being made without animals so they can be at astonishing speeds and maneuverability . About three hundreds years later, Leonardo Da Vinci rejuvenate Bacon's idea with hopes of creating a military vehicle. His idea was transformed into the modern day tank. The first step in making a self-propelled vehicle was taken by Nicholas Joseph Cugnot. He was an eighteenth century French artillery officer. "In 1769 he built and ran a three-wheeled carriage mounting a steam engine of his own design, with the idea that it might be used for pulling guns"2. It was very clumsy vehicle that was shot into the air when it reached the top speed of three miles an hour. Cugnot's vehicle provided almost no improvement of the horse. In the early years of the nineteenth century an American and British duo had began an automotive experiment. Richard Trevithick, a British engineer, and American genius, Oliver Evans created a workable but crude vehicle propelled by steam3. This early experiment was an improvement, but the railroads and stagecoach companies joined together. With this new combining of forces the new steam vehicle, the Orkuter Amphibolos, was brought down.
Most motor vehicles today use an Internal Combustion Engine (ICE) to give them power to drive down the road; ICEs are a form of a heat engine. Gasoline is burned to push a piston, which in return forces the car down the road. As the gas in the cylinder is ignited and expanded it forces the piston down the shaft. The force is carried through piston, which is connected to a crankshaft. The force moves through the transmission, down the driveshaft, and out the tires. The Otto Cycle is used to turn as much heat into the driving force as possible.
The steam engine was an innovative new way to produce power. In 1698 British inventor and engineer Thomas Savery obtained the first patent on the steam engine. In 1769 James Watt patented an improved version of the steam engine. In 1782 James Watt developed the double-acting steam engine. The double-acting steam engine doubled the steam engine’s output. The double-acting steam engine was quickly adopted by the people working on the first steamboat. The creation of the steam engine allowed the extraordinary idea of a steamboat to become rea...
Thomas Savery invented the first steam engine in 1698. People like Thomas Newcome, James Watt, and Richard Arkwright kept improving the machine over many many many years. Arkwright built the first steam-powered textile plant in 1790. The steam engine used steam to power engines and make them run, like in boats and trains. James Watt steam engine became dominant design for modern steam engines. It also helped bring about the Industrial Revolution.
When the internal combustion engine was created in the early 1900’s, many departments began to turn away from the steam driven apparatuses that were currently in service. There was one flaw with these new machines though, it had to have two engines to operate
Mechanical based heat pumps systems all have some common components: a compresser, a condenser, and an evaporator. The whole system is made of pipes that circulate a fluid that allows the transfer of heat. The evaporator is what transfer heat from the air in the room to the fluid inside of the system of pipes. The condenser is what takes the heat from the fluid and transfers it to the air outside.
Boldrin and Levine mentioned in their book Against Intellectual Monopoly how James Watt got the idea of allowing steam to expand and condense in separate containers while repairing a small Newcomen steam engine. In 1768, he applied for a patent on the idea after doing a series of improvements. He spent the next six months working hard to obtain his patent, made an alliance with the rich industrialist Matthew Boulton and even secured an act of Parliament extending his patent until the year 1800. In the name of economic freedom, the great statesman Edmund Burke spoke eloquently in Parliament against the creation of this unnecessary ...
refined in the 1930's when the turbine engine design lead to the patent of the
The diesel engine was granted patent in 1898 and after that it spread around the world in the nineteen hundreds.
For the generation of electricity, hot water, at temperatures ranging from about 700 degrees F, is brought from the underground reservoir to the surface through production wells, and is flashed to steam in special vessels by release of pressure. The steam is separated from the liquid and fed to a turbine engine, which turns a generator. In turn, the generator produces electricity. Spent geothermal fluid is injected back into peripheral parts of the reservoir to help maintain reservoir pressure. If the reservoir is to be used for direct-heat application, the geothermal water is usually fed to a heat exchanger before being injected back into the earth. Heated domestic water from the output side of the heat exchanger is used for home heating, greenhouse heating, vegetable drying and a wide variety of other uses.
Firstly, the gas turbine engine operation begins with the air intake process. As of all internal combustion engine, oxygen is required to support the combustion of the fuel and the source of oxygen is from the fresh air that is taken in. Initially, the fan is rotated by a driving shaft that is powered by the turbine of the engine. A negative or vacuum pressure at the intake side is then created by the rotating fan. Next, the surrounding air is drawn towards the inlet and causes it to flow into the gas turbine engine inlet (Cengel & Boles, 2011). At the same time, the pressure on the other side of the fan is increased as it is compressed at a lower pressure ratio and causes the air in the outlet side of the fan to move fu...
This along with the lighter construction of a two-stroke makes it the preferred motor used in small vehicles and tools (Two Stroke Engine). A two-stroke engine is operated by first drawing the mixture of fuel and air into the chamber by the vacuum caused by the upward stroke of the piston. During the downward piston stroke, the poppet valve is forced closed due to the increased pressure within the chamber. The mixture is compressed in the chamber throughout the stroke. As the stroke ends, the intake port is exposed allowing the mixture to escape into the main cylinder, expelling the exhaust gasses in the process and some of the fuel mixture as well. Momentum then causes the piston to rise, compressing the mixture as another stroke is beginning. Once the stroke reaches its peak, the spark plug will ignite the mixture causing the fuel to expand driving the piston down thus completing the cycle while additionally initiating a new