Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
factors that influence osmosis
sucrose solution in potato cells
sucrose concentration in potato cells
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: factors that influence osmosis
Investigating the Effects of Different Concentrations of Sucrose Solution on Potato Cells Aim: to investigate the different effects of various concentrations of sucrose solution on potato cells. Introduction: Osmosis is a special type of diffusion. Osmosis happens when two solutions of different concentrations are separated by a selectively permeable membrane. A selectively permeable membrane has holes in it which are just big enough for water molecules to pass through, but not the much larger sugar molecules. Water moves across the membrane from a weak solution (high concentration of water molecules) to a stronger solution (lower concentration of water molecules). In this case, the two solutions are the cytoplasm inside the potato cells and the sucrose solution that I am placing my potato chip in. The partially permeable membrane is the cell membrane of the potato cells. When potato chips are placed in pure water, the concentration of water molecules surrounding the plant is higher than the concentration of water molecules inside the cytoplasm of the potato's cells. The water will diffuse into the cell and the cytoplasm by osmosis. This means the cytoplasm pushes out against the cell wall as it expands slightly and the cell becomes firm or turgid. The overall effect over time is for each cell to increase slightly in mass and so the whole potato chip shows an increased mass. However, if you put a piece of potato into a sugar solution (where the water concentration around the chip is lower than the water concentration inside the cytoplasm in the potato's cells), then water will move out of the cells of the potato and into the... ... middle of paper ... ... and also would help me to spot any anomalous results more easily; with only two results, it can be difficult to tell which result of the two is anomalous. In future, I will try to collect three or four sets of results which should be a great help. It would also be good to have a control experiment where a potato chip is placed in distilled water. This would be useful to get a wider spread of results. I could also try using 0.1, 0.3 0.5, 0.7 and 0.9 mole dm-3, which likewise would give me a wider spread of results to help me draw improved conclusions and graphs. Overall, I think that my results were accurate and useful, and my method was fair, although I could have improved my control of temperature by placing the test tubes in a controlled environment such as a water bath, and I should have taken more results.
Investigate how the Concentration of Sucrose Solution affects the Mass of the Potato Chip Aim To find out how the concentration of sucrose solution affects the mass of the potato chip left in the solution for one day. Water Potential: The water potential of a solution is a measure of whether it is likely to lose or gain water molecules from another solution. A dilute solution, with its high proportion of free water molecules, is said to have higher water potential than a concentrated solution, because water will flow from the dilute to the concentrated solution (from a high potential to a low potential). Pure water has the highest possible water potential because water molecules will flow from pure water to any other aqueous solution, no matter how dilute. Prediction: Osmosis is the passage of water molecules from a weaker solution to a stronger solution, though a partially permeable membrane.
Investigation of the Concentration and the Effect of Sucrose on Osmosis in Apple and Potato Tissues
The Effect of Water Concentration on the Mass of Potato Tissue Aim: The aim of this investigation is to discover the effect of water concentration on the mass of potato tissue, and also to investigate the movement of osmosis through potato tissue. Scientific Knowledge: When a substance such as a sugar dissolves in water, the sugar molecules attract some of the water molecules and stop them moving freely. This, in effect, reduces the concentration of water molecules.
cork borer and a ruler. I will keep the potato chips the same size in
Water Potential of Potato Cells Aim: To demonstrate the Water Potential of Potato Cells. Objectives: · To show the water potential of potato cells using various measured concentrations of a sucrose solution and pieces of potato. · To record and analyse data to verify observed results. · The method and procedure was carried out as per instruction sheet. Observations: The experiment shows that the lower the concentration of the sugar solution, in the Petri dish, the mass of the potato increased.
Investigating Osmosis in Potatoes Aim: Investigate the movement of osmosis through a selectively permeable membrane, in this case potato. Introduction: Osmosis is the movement of water through a semi permeable membrane. The water passes from an area of high concentration to an area of low concentration, until the two concentrations are equal in concentrations of water. Many cell membranes behave as semi permeable membranes, and osmosis is a vital part in the movement of liquids in living organisms, for example, in the transport of water from the soil to the roots in plants.
Investigating the Effect of Sugar Solution on the Weight and Size of Potato Cells Aim: To investigate whether the different concentration of sugar solution will affect the weight and size of the potato cells. General background information: Osmosis is defined as the movement of water or any other solution's molecules from an area in which they are highly concentrated to a region in which they are less concentrated. This movement must take place across a partially permeable membrane such as a cell wall, which lets smaller molecules (E.g. water) through but does not allow larger solute molecules to pass through. The molecules will continue to diffuse until the area in which the molecules are found to reach a state of equilibrium, meaning that the molecules are equally distributed throughout the cell, with no area having a higher or lower concentration than any other hence equal. Hypothesis/prediction: For this particular investigation I believe that the lower the concentration of the sugar solution in the test tube the mass of the potato will be greater and the longer the potato cells will be.
there would be no flow of water into or out of the cell so the cell
Influence of Temperature on the Activity of Potato Catalase Hypothesis That the higher the temperature the higher the reaction rate of potato catalyse to a point were denaturing occurs in the enzyme and the reaction rate of the potato catalase drops off. Prediction The rate of Catalase activity will be faster at higher temperatures until a point, because at higher temperatures there are more chances of collisions between the enzyme's (Catalase) active site and the substrate (hydrogen peroxide). However the rate depends on the active site being able to join with the substrate, and at higher temperatures the enzyme can be denatured, which changes the shape of the active site which thus prevents the reaction from happening. At first, as the temperature increases the activity of the Potato catalase also increases this is because the collision rate of the enzyme with the hydrogen peroxide is increased.
For my preliminary work, I used a 50 mm piece of potato. It was easy
Purpose: This lab gives the idea about the enzyme. We will do two different experiments. Enzyme is a protein that made of strings of amino acids and it is helping to produce chemical reactions in the quickest way. In the first experiment, we are testing water, sucrose solution, salt solution, and hydrogen peroxide to see which can increase the bubbles. So we can understand that enzyme producing chemical reactions in the speed. In the second experiment, we are using temperature of room, boiling water, refrigerator, and freezer to see what will effect the enzyme.
The materials needed are three small beakers (150 or 250 ml), a potato, a knife to cut the potato into pieces, a ruler to measure the potato, something to weigh the potato pieces, a timer, a calculator, and three solutions: distilled water, 10% sucrose, and 50% sucrose. The point of this experiment is to calculate the percent change in the mass before and after soaking the potato in the three different solutions. Create your own hypothesis before beginning the experiment. My hypothesis is that the potato soaked in water will have a higher mass after soaking, and that the potato soaked in the 10% sucrose and 50% sucrose will remain the same. Make sure to keep up with your measurements since they are needed to determine the mass percent change. The best way to accomplish this is to use the table provided at the end of this sheet to record your results. The first thing you need to cut the potato into three pieces of about two cubic centimeters (cm^3) in length. The second step you need to take is weighing each potato piece and writing down its mass. Next, label the three beakers with the three different solutions used. Then, you need to pour distilled water over one piece of potato, 10% sucrose on another, 50% sucrose on the last piece of potato; each solution needs to be poured on each potato piece until they are completely submerged. After they are submerged: set your timer for an
How the Concentration of the Substrate Affects the Reaction in the Catalase Inside Potato Cells
4. Put each group of potato discs in one of the 6 test tubes and watch
Determining the Concentration of the Cell Sap in Potato Storage Tissue Aim: To determine the concentration of the cell sap in potato storage tissue. By using Osmosis, determine what the sugar concentration of cell sap is. Prediction I predict that the potato segment in the distilled water will definitely gain in weight because the solution outside it has a much higher concentration of water then in the cell sap meaning Osmosis will occur and the potato segment take in water. I predict that 0.2M sugar solution will also gain weight because it still has quite a high concentration of water outside the potato. The potato in the 0.4M solution will gain weight but the potato in the 0.6M and 0.8M solutions will lose weight.