Read the initial buret readings for both burets to the nearest 0.01 ml. Use a buret reading card to make the meniscus more prominent. Record readings on the report sheet. Have your instructor check and initial your report sheet for your first buret reading (sample #1, only). 6. Rinse a clean 125 ml Erlenmeyer flask with deionized water. Deliver approximately 20 ml of unknown acid into the Erlenmeyer flask. The tip of the buret should be approximately 1/2 inch below the top of the flask to avoid loss due to splashing. 7. Add 2 or 3 drop of phenolphthalein indicator. (Above your lab bench). 8. Titrate the unknown acid by adding standard NaOH (from the buret). Swirl the flask to mix the solutions during the addition of base. As the base is added you will observe a pink color localized at the spot the NaOH enters the solution (this is due to a localized high base concentration). Occasionally, rinse down the walls of your flask with deionized water (This rinses down any acid that has splashed onto the walls of your flask). Near the end-point, the pink color "flashes" throughout the solution and remains for a slightly longer time (1-2 seconds). When this occurs, add the NaOH drop by drop and eventually half-drops until the pink color remains (for at least 30 seconds). This is the end-point! NOTE: If you over-shoot the end-point (too much NaOH is added), add 1-2 more ml of the Unknown acid and then add NaOH again until a proper end-point is reached. Be sure
The primary goal of this experiment was to determine which types of glassware are the most accurate and precise in measuring substances. Another goal of this experiment was to help familiarize ourselves with the different types of glassware, and how we should handle the laboratory equipment. The accuracy and precision of a particular type of glassware is important because it allows for accurate measurements when performing different experiments. It also allows us to differentiate between glassware that is better for containing substances versus glassware that can deliver substances more accurately. In order to measure the accuracy and precision of the different types of glassware, we first chose seven different types of glassware. The general
These results were averaged (table two). If the final temperature was less than the initial temperature, it will be used as a cold pack. If it is greater, it will be used as a hot pack. To determine the amount of grams used, equation three was used.
A lot of society travel to exotic lands because they want to see and experience the different cultures as well as get away from stress and everyday life. Today, many people travel to this exotic island, Bora Bora, to relax on the magnificent white beaches and to stay in the admirable huts that are on the crystal clear waters. According to the U.S Travel Association, about 2.2 billion Americans took a vacation in 2016 seeking for the thrill and experience of exploring new things (Irimia and Gottschling ).
However, the increased temperature of the new acid solution was at a greater temperature than the ambient temperature and the temperature of the water. This suggests that some of the results obtained were partially due to the fact that some of the heat energy of the acid was transferred to the water, as well as the hydration of ions present in solution. An improvement would be to create the solutions of desired concentration and allow them to reach thermal equilibrium with the surroundings. This would allow more accurate results and the allow for the assumption that the temperature change observed during the experiment would only be due to hydration of
Repeat for each trial. Rinse volumetric pipette with vinegar and drain into the waste beaker. Weigh and record the mass of each 200mL beaker. Add 10.00mL of vinegar into each beaker and weigh them and record their again. Add 50mL of de-ionized water to the beakers and place them under the drop counter on top of a stir plate, submerging the pH meter into the solution. Place the stir bar into the beaker and carefully turn on the stir plate so that the stir bar spins without splashing or hitting the sides of the beaker or the pH
A warm water was prepared by heating approximately 100mL of distilled water in a 400mL beaker along with few boiling chips to 45-50 ℃.
The thermometer, containers, and iron ball were secured of any possible contaminants. The stopwatch was calibrated and checked to be correctly measuring the time in seconds and milliseconds, by comparison with other stopwatches. The thermometer was checked to be accurately measuring the temperature of lukewarm water, and was al...
On the lid of the calorimeter, there were two holes and one was being used for the thermometer, and the second one was left open. This hole could have let heat to escape as the reaction was taking place which would have lowered the final temperature value. These conditions would have led to a lower final temperature value. To prevent even the slightest anomalies in the future, any holes on the calorimeter can be covered by tape or another item that could block the passage. The top of the calorimeter could also be covered with aluminum and this would not only cover the holes but would secure the space under the lid so any heat that may escape would stay within the area due to the aluminum. Aluminum could also be tucked in the space between the lid and the calorimeter to once again lock the heat in. This way, the calorimeter will be more effective and maintain all the heat of the reaction resulting in values that are completely accurate and decreasing even the slightest
Using the scopula, take a small amount of the substance and add it to the spot plate. Add deionized water to the section with the substance. Stir to see if the substance dissolves or not. Record your observations.
The purpose of the experiment is to determine the temperature, in degrees Celsius, at which all particle motion stops (absolute zero).
The temperature must be kept constant throughout the experiment, because if the temperature is increased or decreased, the rate of transpiration will change due to kinetic energy of molecules.
borate) and 1.0 g. of sodium hydroxide in 20 mL of warm water. It may
In this experiment the Sodium Hydroxide solution went through three different phases where its quality and quantity changed. The first phase was called I. Preparing Approximately 0.1M NaOH, 1000mL of clear distilled water was boiled and then chilled to room temp.