Analysis Of Powder X-Ray Diffraction (XRD) Analysis

1165 Words3 Pages

3.1. Powder X-ray Diffraction (XRD) analysis

Fig. 1. shows the powder X-ray diffraction pattern was used to record the crystal information of zinc ferrite nanoparticles synthesized by both conventional and microwave assisted combustion method. The phase identification was carried out by comparing the obtained data with standard diffraction patterns. The diffraction peaks at 2θ of 29.90º, 35.22º, 36.84º ,42.80º, 53.09º, 56.59º, 62.13º, 70.47º, 73.48º, 74.48º, and 78.40º can be ascribed to the reflection of (220), (311), (222), (400), (422), (511), (440), (620), (533), (622), and (444) planes of the ZnFe2O4 spinel, respectively. All the detectable peaks in the XRD patterns could be indexed with the standard JCPDS data (82-1042). There is no …show more content…

The average crystallite size of ZnFe2O4-CCM (sample A) was 74.0 nm. For ZnFe2O4-MCM (sample B) it was found to be 37.0 nm. As the calcinations temperature increases (sample A), the corresponding peaks become stronger in intensity, which implies that the crystallinity is higher and the crystallite size is larger in the sample prepared by conventional method. For sample B, single phase cubic ZnFe2O4 produced within the shorter time which give rise to lower crystallinity and smaller crystallite …show more content…

Fig. 4(a-b) represents the HR-SEM images of the agglomerated ZnFe2O4 nanoparticles prepared by CCM (sample A). Fig. 4 (c-d) reveals the formation of ZnFe2O4 nanoparticles prepared by MCM (sample B). All the samples exhibit a compact arrangement of homogeneous nanoparticles. The shape of the ZnFe2O4-MCM particles is basically globular and the particle diameters are in the range of 25-45 nm. The average particle size of the ZnFe2O4-CCM is in the range of 350-800 nm. The micrographs indicate that the particles are nearly spherical with uniform agglomeration to give large and irregular crystals, which may be due to the preparation method, defects, effect of annealing and the presence of magnetic interactions among the particles. It is a well-known fact that the temperature and reaction time are the two essential factors in determining the morphology of the nanomaterials. In contrary to the conventional heating, during the time of microwave heating, the heat is produced internally within the material, rather than from external heating sources, and hence inverted temperature gradient is produced. In microwave method, the nanoparticles have been produced, due to the rapid heating achieved in short time duration, and suppressed diffusion process [34]. Thus, higher temperature of combustion in a furnace caused grain growth compared to the volumetric and rapid microwave

Open Document