Math History

2043 Words5 Pages

Mathematics starts with counting. It is not reasonable, however, to suggest that early counting was mathematics. Only when some record of the counting was kept and, therefore, some representation of numbers occurred can mathematics be said to have started. In Babylonia mathematics developed from 2000 BC. Earlier a place value notation number system had evolved over a lengthy period with a number base of 60. It allowed arbitrarily large numbers and fractions to be represented and so proved to be the foundation of more high powered mathematical development. Number problems such as that of the Pythagorean triples (a,b,c) with a2+b2 = c2 were studied from at least 1700 BC. Systems of linear equations were studied in the context of solving number problems. Quadratic equations were also studied and these examples led to a type of numerical algebra. Geometric problems relating to similar figures, area and volume were also studied and values obtained for p.The Babylonian basis of mathematics was inherited by the Greeks and independent development by the Greeks began from around 450 BC. Zeno of Elea's paradoxes led to the atomic theory of Democritus. A more precise formulation of concepts led to the realisation that the rational numbers did not suffice to measure all lengths. A geometric formulation of irrational numbers arose. Studies of area led to a form of integration. The theory of conic sections show a high point in pure mathematical study by Apollonius. Further mathematical discoveries were driven by the astronomy, for example the study of trigonometry. The major Greek progress in mathematics was from 300 BC to 200 AD. After this time progress continued in Islamic countries. Mathematics flourished in particular in Iran, Syria and India. This work did not match the progress made by the Greeks but in addition to the Islamic progress, it did preserve Greek mathematics. From about the 11th Century Adelard of Bath, then later Fibonacci, brought this Islamic mathematics and its knowledge of Greek mathematics back into Europe. Major progress in mathematics in Europe began again at the beginning of the 16th Century with Pacioli, then Cardan, Tartaglia and Ferrari with the algebraic solution of cubic and quartic equations. Copernicus and Galileo revolutionised the applications of mathematics to the study of the universe. The progress in algebra had a major psychologic...

... middle of paper ...

...ever have taken place without logs. Then the world changed. The pocket calculator appeared. The logarithm remains an important mathematical function but its use in calculating has gone for ever. Here is the challenge. What will replace the calculator? You might say that this is an unfair question. However let me remind you that Napier invented the basic concepts of a mechanical computer at the same time as logs. The basic ideas that will lead to the replacement of the pocket calculator are almost certainly around us. We can think of faster calculators, smaller calculators, better calculators but I'm asking for something as different from the calculator as the calculator itself is from log tables. I have an answer to my own question but it would spoil the point of my challenge to say what it is. Think about it and realise how difficult it was to invent non-euclidean geometries, groups, general relativity, set theory, and everything else to do with MATH!
Einstein and his Theory
What do you think when some one says Einstein, is it Relativity, or E=MC2? What do you think E=MC2 means, well it means Energy=Mass x Speed of Light Squared. He was way ahead of his own time, he was a genius!

Open Document