Limiting Reagent Lab Report

692 Words2 Pages

Before the start of the experiment, the theoretical yield was to be calculated. First, the limiting reagent was determined from the reagents by comparing the amount of moles; the two acids - phosphoric and concentrated sulfuric acid - were found to be the limiting reagent, because their moles combined was less than the amount of moles of 2-methylcyclohexanol. The theoretical yield, which is the amount of product that could be possibly produced after the completion of a reaction (“Calculating Theoretical and Percent Yield”), was found to be 4.4 g. Once the product was achieved, it was determined to have a percent yield of 95%. As a result, the dehydration of 2-methylcyclohexanol has been very successful. In the first part of the experiment, The mixture was combined with saturated sodium chloride, and the aqueous layer, containing alcohol, some acid, and water, was discarded. The organic layer was then dried with granular anhydrous sodium sulfate; this drying agent is used to absorb any water in a solution and should thus, result in a colorless solution. The final product was collected; it was mostly clear, though it has a pale yellow tint. Data Table 2 shows the results and calculations that were gathered after the completion of this experiment. No errors had occurred during the course of the experiment, which is testified by the fairly, high yield of Data Table 3 indicates the observations from these tests. Though a control test for each test wasn’t prepared, due to the starting reagents being unattainable, the results clearly show that the product is unsaturated. An unsaturated compound means that there is/are bonds in its structure. The product was also analyzed by infrared spectroscopy and gas chromatography. The spectrums obtained allowed one to determine the composition of 1-methylcyclohexene; any impurities and excess products were observed as well. From the infrared spectrum, there is a little peak around 3300-3500 cm-1; this indicated a very little presence of alcohol in the product and thus, most of the alcohol has been successfully removed. If one compared the IR spectrum of the product to the starting material, 2-methylcyclohexanol, one could clearly see the change in peak size of the O-H stretch. The infrared spectrum of 1-methylcyclohexene also depicted a C-H stretch and an alkene functional group at 500-1500 cm-1 and 2932.54cm-1, respectively. From the gas chromatography spectrum (Data Table 4), the area percentages show that there were three products - peaks 22 through 24 - that were formed from the dehydration experiment. Nevertheless, there are two predominant products, as shown from their high percentages, 3-methylcyclohexene (~24%) and 1-methylcyclohexene

More about Limiting Reagent Lab Report

Open Document