Diels Alder Reaction

496 Words1 Page

The experiment of Diels-Alder reactions, in particular the furan and maleic anhydride as used in my experiment, observed the exo product as oppose to the exo product. This shows the tendency for the stereochemistry of the Diels-Alder to yield an exo product in preference to the endo product. To determine the stereochemistry, a melt temperature of the product was taken and compared to literature values. The melt temperature for the product was roughly around 113oC, corresponding to the exo Diels-Alder product of furan and maleic anhydride. When compared to the class data of melting ranges, the melting temperature from the reaction was relatively consistent to the majority. Based off this, the assumption can be made that the Diels-Alder prefers …show more content…

The percent yield of products that was calculated for this reaction was about 81.2%, fairly less pure than the previous product but still decently pure. A carbon NMR and H NMR were produced and used to identify the inequivalent carbons and hydrogens of the product. There were 9 constitutionally inequivalent carbons and potentially 4,5, or 6 constitutionally inequivalent hydrogens. On the H NMR there are 5 peaks, but at a closer inspection of the product, it seems there is only 4 constitutionally inequivalent hydrogens because of the symmetry held by the product and of this H’s. However, expansion of the peaks around the aromatic region on the NMR show 3 peaks, which was suppose to be only 2 peaks. In between the peaks is a peak from the solvent, xylene, that was used, which may account to for this discrepancy in the NMR. Furthermore, the product may have not been fully dissolved or was contaminated, leading to distortion (a splitting) of the peaks. The 2 peaks further down the spectrum were distinguished from two H’s, HF and HE, based off of shielding affects. The HF was closer to the O, so it experienced more of an up field shift than HE. On the C NMR, there are 9 constitutionally inequivalent carbons. A CNMR Peak Position for Typical Functional Group table was consulted to assign the carbons to their corresponding peaks. The carbonyl carbon, C1, is the farthest up field, while the carbons on the benzene ring are in the 120-140 ppm region. The sp3 hybridized carbon, C2 and C3, are the lowest on the spectrum. This reaction verifies the statement, ”Measurements have shown that while naphthalene and benzene both are considered especially stable due to their aromaticity, benzene is significantly more stable than naphthalene.” As seen in the reaction, the benzene ring is left untouched and only the naphthalene is involved in the reaction with maleic

Open Document