How the Dialysis Tubing Compares to the Cell Membrane

1029 Words3 Pages

In life, it is critical to understand what substances can permeate the cell membrane. This is important because the substances that are able to permeate the cell membrane can be necessary for the cell to function. Likewise, it is important to have a semi-permeable membrane in the cell due to the fact that it can help guard against harmful items that want to enter the cell. In addition, it is critical to understand how water moves through the cell through osmosis because if solute concentration is unregulated, net osmosis can occur outside or inside the cell, causing issues such as plasmolysis and cytolysis. The plasma membrane of a cell can be modeled various ways, but dialysis tubing is especially helpful to model what substances will diffuse or be transported out of a cell membrane. The experiment seeks to expose what substances would be permeable to the cell membrane through the use of dialysis tubing, starch, glucose, salt, and various solute indicators. However, before analyzing which of the solutes (starch, glucose, and salt) is likely to pass through the membrane, it is critical to understand how the dialysis tubing compares to the cell membrane.
Dialysis tubing is made from regenerated cellulose or cellophane, and is used in clinical circumstances to ensure that molecule have a filtered flow, and that larger solute molecules do not enter the dialysis tubing (Alberts, 2002). Like a cell membrane, dialysis tubing has a semi-permeable membrane, which allows small molecule to permeate through the membrane. Thus, the dialysis tubing mimics the diffusion and osmosis processes of the cell membrane (Alberts, 2002). Although the dialysis tubing has a semi-permeable membrane, which mimics a cell, its structure is different. The me...

... middle of paper ...

...s a component monomer of starch. As a monomer as opposed to a polymer, it is much smaller and would thus be able to cross the plasma membrane. However, glucose is a larger solute than the component ions of salt, thus meaning that simple diffusion would not be sufficient. Instead, facilitated diffusion would be needed to transport the glucose. However, in the dialysis tubing, there is no facilitated transport like there is for the plasma membrane. Thus, the glucose may pass through the dialysis tubing, but it would not be due to transport, but the artificial enlargement of the passages in the dialysis tubing. Water would move freely inside and outside of the cell, however, because there is a greater solute concentration inside the cell, the water would diffuse through osmosis into the cell model, increasing the final mass of the dialysis tubing and causing cytolysis.

More about How the Dialysis Tubing Compares to the Cell Membrane

Open Document