Benzyl Bromide Lab Report

872 Words2 Pages

Benzyl bromide, an unknown nucleophile and sodium hydroxide was synthesized to form a benzyl ether product. This product was purified and analyzed to find the unknown in the compound. A condenser and heat reflux was used to prevent reagents from escaping. Then the solid product was vacuum filtered. The product was recrystallized to purify it and the unknown filtrate and nucleophile was determined by taking the melting points and performing TLC. Nucleophilic substitution reactions have a nucleophile (electron pair donor) and an sp3 electrophile (electron pair acceptor) with an attached leaving group. This experiment was a Williamson ether synthesis usually SN2, with an alkoxide and an alkyl halide. Conditions are favored with a strong nucleophile, good leaving group, and a polar aprotic solvent. Mixed …show more content…

It could have been lower than 100% because some product was lost during the recrystallization process, or due to an incorrect separation of the impurities when cooling the mixtures. The melting point data confirmed that the synthesized crystals were likely identical to the methoxybenzyl phenol ether because the mixed melting point was the same as the purified crystals. If the products were different or the synthesized product had to many impurities in it then the mixed melting point would have been lower than that of just the crystals, by themselves. The TLC made sense, after looking at the TLC plates under UV light and the calculation of the Rf values, it was confirmed that the 4- Methoxy-phenol was present in the unknown. With all three TLC plates, with varying quantities of hexane and hexane: ethyl acetate, the unknown and the 4- Methoxy-phenol moved the same distance up the plate towards the solvent front. The substitution reaction was successful and lead to the formation of a methoxybenzyl phenol ether with the 4- Methoxy-phenol nucleophile. The data taken from the TLC and the melting points confirmed

Open Document