Investigation of How the Concentration of Catalase Enzyme Affects the Rate of Reaction Aim: To find out how the concentration of Catalase Enzyme will affect the enzyme activity and the rate of reaction towards Hydrogen Peroxide. (H O ) Prediction: I predict that with the higher concentration of enzyme, the likelihood of it breaking down molecules will be greater because there will be more enzymes to work at the substrate and the chances of it colliding will be higher making the activity time quicker. Equipment: · Syringe · Measuring Cylinder (×2) · Knife · Blender · Beakers (×2) · Balance · Hydrochloric Acid in a beaker · Stop clock · Potato · Water in a beaker Preliminary Experiment: In this experiment we will be using an enzyme called Catalase. By using different amounts of this enzyme we will be diluting it with water to test how the concentration of Catalase affects the rate of reaction with Hydrogen Peroxide. (H O ) Catalase is an enzyme mainly found in the liver of our body. One of its functions is to break down Hydrogen Peroxide, a compound almost the same as water, containing Hydrogen (2 atoms) and Oxygen (2 atoms). Its chemical formula is H ) . In our body we produce Hydrogen Peroxide. Sometimes people may get small patches of white in the skin and this is a result of over production of H O . Although Hydrogen Peroxide left alone will eventually break down, Catalase will speed this reaction up a lot faster therefore in those circumstances it is inserted into the body. Hydrogen Peroxide broken down will produce Water and Oxygen. In our experiment the independent variable is the concentration of the Catalase Enzyme. Our dependent variable is the rate of the reaction. In this particular experiment we will be using diluted Hydrogen Peroxide as we will be using a lot. I have decided to do a Preliminary Experiment because it will be a
How does the temperature (-2°C, 20°C, 30°C, 40°C, 60°C) affect the production of oxygen (cm3) from cow hepatic (the enzyme catalase) when placed in boiling tube with 10 ml of 3% hydrogen peroxide for 1 minute?
For example, substrate concentration, enzyme concentration, and temperature could all be factors that affected the chemical reactions in our experiment. The concentration of substrate, in this case, would not have an affect on how the bovine liver catalase and the yeast would react. The reason why is because in both instances, the substrate (hydrogen peroxide) concentration was 1.5%. Therefore, the hydrogen peroxide would saturate the enzyme and produce the maximum rate of the chemical reaction. The other factor that could affect the rate of reaction is enzyme concentration. Evidently, higher concentrations of catalase in the bovine liver produced faster reactions, and the opposite occurs for lower concentrations of catalase. More enzymes in the catalase solution would collide with the hydrogen peroxide substrate. However, the yeast would react slower than the 400 U/mL solution, but faster than the 40 U/mL. Based on this evidence, I would conclude that the yeast has a higher enzyme concentration than 40 U/mL, but lower than 400
Catalase is a common enzyme that is produced in all living organisms. All living organisms are made up of cells and within the cells, enzymes function to increase the rate of chemical reactions. Enzymes function to create the same reactions using a lower amount of energy. The reactions of catalase play an important role to life, for example, it breaks down hydrogen peroxide into oxygen and water. Our group developed an experiment to test the rate of reaction of catalase in whole carrots and pinto beans with various concentrations of hydrogen peroxide. Almost all enzymes are proteins and proteins are made up of amino acids. The areas within an enzyme speed up the chemical reactions which are known as the active sites, and are also where the
The Effect of pH on the Activity of Catalase Planning Experimental Work Secondary Resources Catalase is a type of enzyme found in different types of foods such as potatoes, apples and livers. It speeds up the disintegration of hydrogen peroxide into water because of the molecule of hydrogen peroxide (H2O2) but it remains unchanged at the end of the reaction.
It is important however to note that the NH4 and K ions are still in
Abstract: Enzymes are catalysts therefore we can state that they work to start a reaction or speed it up. The chemical transformed due to the enzyme (catalase) is known as the substrate. In this lab the chemical used was hydrogen peroxide because it can be broken down by catalase. The substrate in this lab would be hydrogen peroxide and the enzymes used will be catalase which is found in both potatoes and liver. This substrate will fill the active sites on the enzyme and the reaction will vary based on the concentration of both and the different factors in the experiment. Students placed either liver or potatoes in test tubes with the substrate and observed them at different temperatures as well as with different concentrations of the substrate. Upon reviewing observations, it can be concluded that liver contains the greater amount of catalase as its rates of reaction were greater than that of the potato.
Investigating the Effect of Substrate Concentration on Catalase Reaction. Planning -Aim : The aim of the experiment is to examine how the concentration of the substrate (Hydrogen Peroxide, H2O2) affects the rate of reaction. the enzyme (catalase).
Investigating Factors that Affect the Rate of Catalase Action Investigation into the factors which affect the rate of catalase action. Planning Aim: To investigate the affect of concentration of the enzyme catalase on the decomposition reaction of hydrogen peroxide. The enzyme: Catalase is an enzyme found within the cells of many different plants and animals. In this case, it is found in celery.
The Effect of Temperature on the Activity of the Enzyme Catalase Introduction: The catalase is added to hydrogen peroxide (H²0²), a vigorous reaction occurs and oxygen gas is evolved. This experiment investigates the effect of temperature on the rate at which the enzyme works by measuring the amount of oxygen evolved over a period of time. The experiment was carried out varying the temperature and recording the results. It was then repeated but we removed the catalase (potato) and added Lead Nitrate in its place, we again tested this experiment at two different temperatures and recorded the results. Once all the experiments were calculated, comparisons against two other groups were recorded.
The Effect of a Catalase on the Breakdown of Hydrogen Peroxide Aim To follow the progress of a catalysed reaction by measuring the volume of gas produced as the reaction proceeds. Using the initial rates of a series of experiments I will be able to find the orders of the reaction with respect to enzyme and substrate. Also to find out if concentration has an effect on the reaction when an enzyme is used to accelerate the breakdown of hydrogen peroxide.
How Hydrogen Peroxide Affects the Rate of Reaction of the Enzyme Catalase Introduction: Catalase, like all enzymes, is made up of protein molecules. It can be found in the cytoplasm of living tissue. It speeds up the decomposition of Hydrogen Peroxide, a metabolic waste product, into water and oxygen that can safely be removed from the cell. The type of reaction involved is known as a catabolic reaction (i.e. substrate broken down.)This is simply because the substrate enters the active site and is broken down, and leaves as 2 separate products, in this case water and oxygen: 2H2O2> 2H20 + O2
In this lab, it was determined how the rate of an enzyme-catalyzed reaction is affected by physical factors such as enzyme concentration, temperature, and substrate concentration affect. The question of what factors influence enzyme activity can be answered by the results of peroxidase activity and its relation to temperature and whether or not hydroxylamine causes a reaction change with enzyme activity. An enzyme is a protein produced by a living organism that serves as a biological catalyst. A catalyst is a substance that speeds up the rate of a chemical reaction and does so by lowering the activation energy of a reaction. With that energy reactants are brought together so that products can be formed.
Without enzymes, reactions wouldn’t occur and living organisms would die. For instance, the enzyme in the stomach breaks down large molecules to smaller molecules to absorb nutrition faster. Researchers experimented with enzyme activity with a potato extract. Researchers will test enzyme activity by increasing and decreasing pH levels, lowering and increasing temperature, and substrate concentration effects. In the first experiment, researchers hypothesized whether different pH levels would change how much Benzoquinone are created and how will the enzymes function in neutral pH levels than higher and lower levels. Researchers used potato extract and different levels of pH to test their hypothesis. In addition, researchers questioned at what temperature does the greatest amount of potato extract enzyme activity take place in. Researchers then hypothesized that the results would indicate the greatest amount of potato enzyme activity level will take place in room temperature. In this experiment, researchers used potato extract and different temperature levels to test the hypothesis. Moreover, researchers wanted to test the color intensity scale and how specific catechol oxidase is for catechol. In this experiment, researchers used dH2O, catechol solution, hydroquinone, and potato extract. Lastly, researchers tested the substrate concentration and how it has an effect on enzyme activity. In this experiment researchers used different measurements of catechol and 1cm of potato extract. Researchers hypothesized that the increase o substrate would level out the enzyme activity
How the Concentration of the Substrate Affects the Reaction in the Catalase Inside Potato Cells
If I was to do this experiment again I might use a Fungi amylase to