Synthesis And Photosynthhesis: What Is Diazotroph?

1342 Words6 Pages
What is Diazotroph?
Diazotrophs are bacteria and archaea that fix atmospheric nitrogen gas into a more usable form such as ammonia. A diazotroph is an organism that is able to grow without external sources of fixed nitrogen. Examples of organisms that do this are rhizobia and Frankia (in symbiosis) and Azospirillum.
Types of Diazotroph ?
Diazotrophs are scattered across bacterial taxonomic groups . Even within a species that can fix nitrogen there may be strains that do not fix nitrogen. Fixation is shut off when other sources of nitrogen are available, and, for many species, when oxygen is at high partial pressure. Bacteria have different ways of dealing with the debilitating effects of oxygen on nitrogenases,

• Free-living
…show more content…
Azotobacter vinelandii is the most studied of these organisms. It uses very high respiration rates, and protective compounds, to prevent oxygen damage. Many other species also reduce the oxygen levels in this way, but with lower respiration rates and lower oxygen tolerance.
• Oxygenic photosynthetic bacteria generate oxygen as a by-product of photosynthesis, yet some are able to fix nitrogen as well. These are colonial bacteria that have specialized cells (heterocysts) that lack the oxygen generating steps of photosynthesis. Examples are Anabaena cylindrica and Nostoc commune. Other cyanobacteria lack heterocysts and can fix nitrogen only in low light and oxygen levels (e.g. Plectonema).
• Anoxygenic photosynthetic bacteria do not generate oxygen during photosynthesis, having only a single photosystem which cannot split water. Nitrogenase is expressed under nitrogen limitation. Normally, the expression is regulated via negative feedback from the produced ammonium ion but in the absence of N2, the product is not formed, and the by-product H2 continues unabated
…show more content…
The bacteria also infect the roots leading to the formation of nodules. Actinorhizal nodules consist of several lobes, each lobe has a similar structure as a lateral root. Frankia is able to colonize the cortical tissue of nodules where it fixes nitrogen.[ Actinorhizal plants and Frankias also produce haemoglobins, but their role is less well established than for rhizobia. Although at first it appeared that they inhabit sets of unrelated plants (alders,Australian pines, California lilac, bog myrtle, bitterbrush, Dryas), revisions to the phylogeny of angiosperms show a close relatedness of these species and the legumes.[These footnotes suggest the ontogeny of these replicates rather than the phylogeny. In other words, an ancient gene (from before the angiosperms and gymnosperms diverged) that is unused in most species was reawakened and reused in these species.
• Cyanobacteria—there are also symbiotic cyanobacteria. Some associate with fungi as lichens, with liverworts, with a fern, and with a cycad. These do not form nodules (indeed most of the plants do not have roots). Heterocysts exclude the oxygen, as discussed above. The fern association is important agriculturally: the water fern Azolla harbouring Anabaena is an important green manure for rice

More about Synthesis And Photosynthhesis: What Is Diazotroph?

Open Document