College Mathematics
Mohave Community College
Kelsey Uhles
May 3, 2014
In math we must know how to classify different numbers. Numbers can be classified into groups which with a little bit of studying are easy to understand over time. Terms in math are thrown around easily and if you don’t understand the terms math will suddenly become much more difficult. The terms and groups that I am referring to are where the different numbers fall into different groups. These groups are Natural numbers, Whole numbers, Integers, Rational numbers, Real numbers, and Irrational numbers.
First Natural numbers which are what we use and see as our counting numbers. These numbers consist of these simple numbers 1, 2, 3, 4… and so on. Whole numbers are the next numbers which include all natural numbers along with the number zero which means that they are for example 0, 1, 2, 3, 4… and so on. Integers can also be whole numbers but also can be whole numbers with a negative sign in front of them. Integers are the individual numbers such as -4, -3, -2, -1, 0, 1, 2, 3, 4… and so on. Rational numbers include integers along with fractions, and decimals. Examples for Rational numbers include ¼, -¾, 7.82, 2, 123/25, 0.3333. Irrational numbers do not include integers or fractions. Although Irrational numbers are the only group that is classified with numbers that can have a decimal value that can continue for however long with no specific pattern unlike rational numbers. An example of an irrational number could be pi. Pi which we usually just round to 3.14 is actually 3.1415926535897932384626433832795… and this continues on for trillions of digits. And last comes Real numbers which include natural numbers, whole numbers, integers, rational number...
... middle of paper ...
...er is rational such as √2 , we can then go to the next step. Recalling that refers only to the positive square root of 2, this means that could be written as the quotient of two positive integers, such as √2 =a/b, where the fractions in lowest terms. We can assume that a and b have no common factors. We can then use simple algebra to find out the conclusion as the following:
√2b=a
(√2b)^2=a^2
2b^2=a^2
With this we are able to determine that a^2 is in fact an even number and that a^2 has 2 as a factor. Since a^2= axa it says that 2 must be a factor of a. Which says that a itself is an even number but that a^2 has 4 as a factor, and therefore 2b^2 has 4 as a factor. Then b^2 has 2 as a factor so that b^2 is an even number. So a/b would not be in its lowest terms since both a and b have 2 as a factor which shows that √2 is an irrational number and cannot be rational.
22) Socratic thinkers were unique because they viewed the world in a different way than others. . They often used the "Socratic method" in order to question and answer things
natural numbers are labeled 1, 2, 10, 11, 12, 20, 21, 22, 100, and so forth.
Rationalism derives from the idea that accepts the supremacy of reason, as opposed to blind faith, and aims at establishing a system of philosophy, values, and ethics that are verifiable by experience, independent of all arbitrary assumptions or authority. The principle doctrine of rationalism holds that the source of knowledge is reason and logic. Thus, rationalism is contrasted with the idea that faith, revelation and religion are also valid sources of knowledge and verification. Rationalists, in this context, prioritize the use of reason and consider reason as being crucial in investigating and understanding the world, and they reject religion on the grounds that it is unreasonable. Rationalism is in contradistinction to fideism;
The modern mathematical mind of a high school student is an abyss due to the colorless lectures constantly repeating. Recently, the updated education system, Common Core Math, was implemented across the United States. Common Core Mathematics is a set of standards that focuses on a set of math skills and concepts to prepare students for mathematics in college, career, and in life. Although there has been a continuous dispute on how to instruct math, there are multiple methods for a teacher to teach mathematics. For example, some teachers stress memorization and exact answers, while others teach math with meaning and approximation. An adequate math pedagogy is perfectly between the two methods; a method where students can mentally solve a simple
The more common notion of numeracy, or mathematics in daily living, I believe, is based on what we can relate to, e.g. the number of toasts for five children; or calculating discounts, sum of purchase or change in grocery shopping. With this perspective, many develop a fragmented notion that numeracy only involves basic mathematics; hence, mathematics is not wholly inclusive. However, I would like to argue here that such notion is incomplete, and should be amended, and that numeracy is inclusive of mathematics, which sits well with the mathematical knowledge requirement of Goos’
Euclid also showed that if the number 2n - 1 is prime then the number 2n-1(2n - 1) is a perfect number. The mathematician Euler (much later in 1747) was able to show that all even perfect numbers are of this form. It is not known to this day whether there are any odd perfect numbers.
For the Greeks philosophy wasn’t restricted to the abstract it was also their natural science. In this way their philosophers were also their scientist. Questions such as what is the nature of reality and how do we know what is real are two of the fundamental questions they sought to answer. Pythagoras and Plato were two of the natural philosophers who sought to explain these universal principles. Pythagoras felt that all things could be explained and represented by mathematical formulae. Plato, Socrate’s most important disciple, believed that the world was divided into two realms, the visible and the intelligible. Part of the world, the visible, we could grasp with the five senses, but the intelligible we could only grasp with our minds. In their own way they both sought to explain the nature of reality and how we could know what is real.
Multiplying proper fractions requires a few steps. The first step will be to multiply the top two numbers also known as the numerators. Second you will multiply the bottom two numbers of the fraction; these are known as the denominators. Once you have multiplied both numerators and denominators, you will need to look at the fraction to see if it can be simplified. This can be done by determining the largest number
While numeracy and mathematics are often linked together in similar concepts, they are very different from one another. Mathematics is often the abstract use of numbers, letters in a functional way. While numeracy is basically the concept of applying mathematics in the real world and identifying when and where we are using mathematics. However, even though they do have differences there can be a similarity found, in the primary school mathematics curriculum (Siemon et al, 2015, p.172). Which are the skills we use to understand our number systems, and how numeracy includes the disposition think mathematically.
While studying the golden mean it becomes evident just how relevant this number is in the world. Many architects and artists have used this ratio as a scale and proportion sequence. The sequence is also relevant in music, nature and even the human body. Ancient mathematicians were so fascinated in the ratio because of its frequency in geometry. The first person to provide a written definition was Euclid. He stated “A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the less” this has been studied thoroughly by many mathematicians but the most relevant was the studies of Leonardo Fibonacci. Fibonacci is famous for the work he put in to come up with the Fibonacci sequence.
Ramasinghe, W. (2005). A Simple Proof e2 is Irrational. International Journal of Mathematical Education in Science and Technology, 36(4):407-441
The history of math has become an important study, from ancient to modern times it has been fundamental to advances in science, engineering, and philosophy. Mathematics started with counting. In Babylonia mathematics developed from 2000B.C. A place value notation system had evolved over a lengthy time with a number base of 60. Number problems were studied from at least 1700B.C. Systems of linear equations were studied in the context of solving number problems.
The early acquisition of mathematical concepts in children is essential for their overall cognitive development. It is imperative that educators focus on theoretical views to guide and plan the development of mathematical concepts in the early years. Early math concepts involve learning skills such as matching, ordering, sorting, classifying, sequencing and patterning. The early environment offers the foundation for children to develop an interest in numbers and their concepts. Children develop and construct their own meaning of numbers through active learning rather than teacher directed instruction.
We face several situation in our lifetime, and even though all these situations are different, they all have one thing in common. The all can be handled with a step by step problem solving attitude. Math, the study of logic, deductions, and applications is what creates this problem solving attitude. Math deals with numbers along with all the operations that can be used with them. Math is a strict rule based subject that fosters the structured thinking and problem solving attitude, which is used for analyzing daily problems, not just numeric ones. Math is used every day. Math is used in cooking, shopping, driving, daily
What is math? If you had asked me that question at the beginning of the semester, then my answer would have been something like: “math is about numbers, letters, and equations.” Now, however, thirteen weeks later, I have come to realize a new definition of what math is. Math includes numbers, letters, and equations, but it is also so much more than that—math is a way of thinking, a method of solving problems and explaining arguments, a foundation upon which modern society is built, a structure that nature is patterned by…and math is everywhere.