First of all, the purpose of this lab was to determine the water’s vapor pressure at different temperatures as well as to measure the molar heat of vaporization of water using the Clausias Clapeyron equation. The first concept out of many represented in this lab is the ideal gas law. The ideal gas law is used to get the number of moles of air trapped in the 10 mL graduated cylinder. Once we cooled the system so that water vapor is extremely minute, and then we determined the number of moles of air using the ideal gas law. The number of moles of air equals to the pressure (in atm) times volume divided by constant times temperature. One would assume that when the water is heated to 80 degrees, the number of air molecules in the air bubble would decrease, but it actually stays constant. This is due to the fact that there is no air coming in or out of the cylinder. As the temperature gets closer to 80 degrees, the number of air molecules stays the same but the water vapor increases. And the bubble expands to keep the pressure at the same level. The ideal gas law was also used when the partial pressure of air in the gas mixture is calculated. This is gotten from number of moles multiplied by the constant and the constant and the whole thing divided by the volume.
enclosure is driven by the strength of the hydrogen bonds between the water molecules, leading
Introduction: The purpose of this experiment was to isolate eugenol or clove oil from cloves using steam distillation and determine whether it is an efficient way to carry out this experiment. Also, TLC and 1H NMR were preformed to analyze the purity of the isolated eugenol.
It was learned that changing the volume of the same substance will never change the boiling point of the substance. However having two different substances with the same volume will result in two different boiling points. The purpose of this lab was to determine if changing the volume of a substance will change the boiling point. This is useful to know in real life because if someone wanted to boil water to make pasta and did not know how much water to
At a constant temperature, a pure liquid has a vapor pressure that describes the pressure of escaped gaseous molecules that exist in equilibrium at the liquid’s surface. Adding energy to a pure liquid gives more molecules the kinetic energy to break the intermolecular forces maintaining the liquid and raises the overall temperature of the liquid. Eventually, adding energy boosts the liquid’s vapor pressure until it equals the surrounding atmospheric pressure. When this occurs, the pure liquid boils at a temperature called the boiling point.
Evaporation is part of our everyday lives. After washing the dishes, after taking a shower, and many more signs of evaporation in our everyday lives, but does every type of liquid evaporate at the same rate? Sometimes liquids may be sitting in one dry place and its molecules might turn into gas molecules, that is the process of evaporation. When energy in certain molecules reaches a specific level, those molecules have a phase change. Evaporation occurs when molecules escape from their liquid and form into vapor. If there was a puddle of water outside, and it was a windy day, the air from the wind can cause an increased rate of evaporation. When a molecule
The comparison between the vapour compression and vapour absorption systems are given in Table 1
technique used with a more viscous liquid and a wider nozzle results in a foam.
Advantage of steam lies in the blatant heat liberated when it condenses on a cooler surface raising the temp of that surfaces.
A representation of the slow decrease in flux that can result from consolidation of the fouled layer is presented in figure 2.4.
Bernoulli’s principle is the concept that as the speed of a moving fluid (liquid or gas) increases, the pressure within that fluid decreases. This principle was originally formulated in 1738 by the Swiss mathematician and physicist Daniel Bernoulli, it states that the total energy in a steadily flowing ...
Aim: To determine the effect of temperature change on the height of water in capillary action at 8 seconds.
Raoult’s law states that the vapor pressure of one liquid is equal to the product of the vapor pressure of the pure liquid and the mole fraction of that liquid in the liquid. The total vapor pressure is simply the sum of the partial pressures of the two liquid components. Dalton’s law states that the mole fraction of one liquid in the vapor is equal to the partial pressure of the liquid divided by the total pressure. These laws can help explain the process of fractional distillation.