Faraday's work on the liquefaction of gases came at a time when the Royal Institution was experiencing lean times and researchers had been forced to turn their attention towards the commercial aspects of science in order to survive. In between working on steel for surgical instruments and improving the manufacture of glass for optics, Faraday continued his research. After fruitlessly heating gases in an attempt to liquefy them, Faraday chan...
It was learned that changing the volume of the same substance will never change the boiling point of the substance. However having two different substances with the same volume will result in two different boiling points. The purpose of this lab was to determine if changing the volume of a substance will change the boiling point. This is useful to know in real life because if someone wanted to boil water to make pasta and did not know how much water to
First of all, the purpose of this lab was to determine the water’s vapor pressure at different temperatures as well as to measure the molar heat of vaporization of water using the Clausias Clapeyron equation. The first concept out of many represented in this lab is the ideal gas law. The ideal gas law is used to get the number of moles of air trapped in the 10 mL graduated cylinder. Once we cooled the system so that water vapor is extremely minute, and then we determined the number of moles of air using the ideal gas law. The number of moles of air equals to the pressure (in atm) times volume divided by constant times temperature. One would assume that when the water is heated to 80 degrees, the number of air molecules in the air bubble would decrease, but it actually stays constant. This is due to the fact that there is no air coming in or out of the cylinder. As the temperature gets closer to 80 degrees, the number of air molecules stays the same but the water vapor increases. And the bubble expands to keep the pressure at the same level. The ideal gas law was also used when the partial pressure of air in the gas mixture is calculated. This is gotten from number of moles multiplied by the constant and the constant and the whole thing divided by the volume.
NiSource is one of the biggest natural gas distribution companies in the USA. Company is not responsible for the production of natural gas, but rather purchases fossil fuel at the source and transmits supply thru its pipelines to industries and local costumers. Natural gas can be transported to distribution facilities in two ways: underground gas pipelines or shipped by the sea in LNG tankers. In nature during the extraction, natural gas exists as a gas, which needs to be captured by special pipeline system designed for gathering processes. Captured gas contains water and other impurities that have to be removed in production well. In order to be transported, it needs to be cooled and transformed into liquid, which increases transportation efficiency to processing units and improves transportation cost ratio. Regasification is the process when "wet", liquid natural gas is processed and changed to pipeline quality natural gas. Natural gas needs to be turned back to gas in order to be useful for residential and commercial customers. This process needs to be monitored and measured for quality and content of natural gas due to the risk of pipeline rupture and safety. "Natural gas entering the system that is not within certain specific gravities, pressures, Btu content range, or water content level will cause operational problems, pipeline deterioration, or even cause pipeline rupture."1 Natural gas transported to distributors is called "dry" gas due to the physical state.
(CNG). That's because the gas is confined to a pressure of approximately 3,600 pounds p...
Based on Collins English Dictionary (2003), petrol is defined as any one of various volatile flammable liquid mixtures of hydrocarbons, mainly hexane, heptane, and octane, obtained from petroleum and used as a solvent and a fuel for internal-combustion engines. Currently, the petrol becomes a necessary for everyone especially for user in transportation. Caless, Capel and Leonard (2011) stated that in the late of nineteenth century, a chemical company in London use 'petrol' as their product name.
Gasoline as we know it today comes from crude oil. Crude oil, which is a fossil fuel, is a nonrenewable (once its gone, its gone for good) fuel source. Fossil fuel is comprised of naturally decaying plants and animals which once lived in oceans and seas millions of years ago. Where we find crude oil deposits we also find ancient oceans and seabeds. When extracted from the earth, crude oil may have colors ranging from clear to jet black and resistance to flow or viscosity from water to a molasses type substance.
THE NONRENEWABLE RESOURCE FORMATION Like oil, natural is a product of decomposed organic matter, usually from ancient marine microorganisms left on the bottom of bodies of waters mixed with mud, silt, and sand on the sea floor, gradually becoming buried over time. Since it is sealed off in an oxygen-free environment and exposed to increasing amounts of heat and pressure, the organic matters undergo a thermal breakdown process that converts it into hydrocarbons. The lightest of these hydrocarbons exit in the gaseous state under normal conditions and are known collectively as natural gas. Once this natural gas forms, it depends on two very critical characteristics of the surrounding rock: porosity and permeability.
Ripped Fuel is a dangerous supplement and it is important that my cousin and his parents know what Ripped Fuel is and the present and long term effects of using this product. Even at an appropriate age, taking Ripped Fuel can have negative side effects on the person consuming it. A few of these side effects include: insomnia, nervousness, and headaches; all of which are caused by the high doses of caffeine. In more serious cases, there have been reports of heart palpations, tremors, and agitation. A majority of weight loss supplements increase the amount of water consumed by the body and Ripped Fuel is no different. If one does not intake the required amount of fluids while taking Ripped Fuel, their body will experience dehydration.
The study of the relation between internal energy, heat, and work is the basic foundation in thermodynamics. How they interact can be applied to mechanics and experiments. For example, if you add heat to a piston, the gas contained inside will begin to expand and cause displacement, doing work. Gases are heavily studied in thermodynamics, because the internal energy is easier to account for. Gases only have kinetic energy because the potential energy is negligible since the far apart molecules cannot interact with each other. The four main types of thermodynamic processes- isovolumetric, isothermal, adiabatic, and isobaric-all involve the relation between work, heat, and internal energy on gases.
The Gravimetric Stoichiometry lab was a two-week lab in which we tested one of the fundamental laws of chemistry; the Law of Conservation of Mass. The law states that in chemical reactions, when you start with a set amount of reactant, the product should theoretically have the same mass. This can be hard sometimes because in certain reactions, gases are released and it’s hard to measure the mass of a gas. Some common gases released in chemical reactions include hydrogen, carbon dioxide, oxygen and water vapor.
In this report I will explain the fuel systems in an automobile. I will cover different parts and how they work. First thing to do is explain how the fuel system works. The purpose of the fuel system is to store and supply fuel to the cylinder chamber where it can be mixed with air then vaporized and burned to produce energy. The fuel, which can be either gas or diesel is stored in a fuel tank. A fuel pump draws the fuel from the gas tank through lines and brings it through a fuel filter. Next it goes to either a carburetor or fuel injector and then delivered to the cylinder chamber for combustion.
Perhaps one of the most interesting features of our fathomless universe are the planets that are classified as gas giants. Huge, turbulent, and distant, the gas giants are some of the most enigmatic features in our Solar System. I have a personal interest to the gas giants and celestial bodies in general. When I was a child, I was fascinated by our Solar System. I read innumerable books about space, and my interests of outer space had been piqued further by other forms of media. Although I held this interest of space, growing up left me with little time to learn about space, and I lost interest for a while. Taking Earth Science in Milpitas High re-invigorated my interests in the celestial bodies. Using this class, I’m now able to focus on learning more about our colossal universe, in particular, the outer planets.
Bruce Mattson. “Henry Cavendish 1731-1810”. History of Gas Chemistry. Updated September 25, 2001. Retrieved December 1, 2011
Rowlinson, J.S. “James Joule, William Thomson and the Concept of a Perfect Gas.” The Royal