Investigating the Amount of Oxygen Given Off When Catalase Reacts with Hydrogen Peroxide
My aim for this investigation is to measure the amount of oxygen given
off when we react catalase (enzyme) with hydrogen peroxide
(substrate), this means that I aim to investigate the effect of
hydrogen on the activity of catalase.
Background Information
Enzymes such as Catalase are protein molecules that are found in
living cells. They are used to speed up specific reaction in the cell.
The enzymes are all very specific as each enzyme performs one
particular reaction.
Catalase is an enzyme found in many foods such as potato and liver.
It's used for removing Hydrogen Peroxide from cells. Hydrogen Peroxide
is the poisonous product of metabolism. Catalase speeds up the
decomposition of Hydrogen Peroxide into oxygen and water.
Variables
I will make sure I keep the following variables the same.
Size of potato: The Size of a potato cube would effect the
investigation because the size of the cube would effect the number of
cells in contact with the hydrogen peroxide.
Temperature: Temperature can increase and decrease the rate of
reaction.
Concentration: The concentration of the hydrogen peroxide would effect
the rat of reaction.
Dimensions of potato: If the potato has more surface area showing that
will effect the number of cells in contact with the hydrogen peroxide.
My Input variable is hydrogen peroxide (H2O2). I will change my input
variable by changing its concentration, by diluting it with 1ml of
water each time.
My values will be:
Hydrogen Peroxide
Water
5mls
0mls
4mls
1ml
3mls
2mls
2mls
3mls
1ml
4mls
My out put variable will be the oxygen.
To ensure this experiment is done as fairly as possible, all the
variables apart from the concentration of Hydrogen Peroxide must be
kept the same for all of the experiments. Variables that must not be
altered are:
In the lab, Inhibiting the Action of Catechol Oxidase we had to investigate what type of enzyme inhibition occurs when an inhibitor is added. Catechol oxidase is an enzyme in plants that creates benzoquinone.Benzoquinone is a substance that is toxic to bacteria. It is brown and is the reason fruit turns brown. Now, there are two types of inhibitors, the competitive inhibitor and non-competitive inhibitor. For an enzyme reaction to occur a substrate has to bind or fit into the active site of the enzyme. In competitive inhibition there is a substrate and an inhibitor present, both compete to bind to the active site. If the competitive inhibitor binds to the active site it stops the reaction. A noncompetitive inhibitor binds to another region
The results of this experiment showed a specific pattern. As the temperature increased, the absorbance recorded by the spectrophotometer increased indicating that the activity of peroxidase enzyme has increased.At 4C the absorbance was low indicating a low peroxidase activity or reaction rate. At 23C the absorbance increased indicating an increase in peroxidase activity. At 32C the absorbance reached its maximum indicating that peroxidase activity reached its highest value and so 32 C could be considered as the optimum temperature of peroxidase enzyme. Yet as the temperature increased up to 60C, the absorbance decreased greatly indicating that peroxidase activity has decreased. This happened because at low temperature such as 4 C the kinetic energy of both enzyme and substrate molecules was low so they moved very slowly, collided less frequently and formed less enzyme-substrate complexes and so little or no products. Yet, at 23 C, as the temperature increased, enzyme and substrate molecules
The purpose of this study is to analyze the activity of the enzyme, catalase, through our understanding
Catalase is a common enzyme that is produced in all living organisms. All living organisms are made up of cells and within the cells, enzymes function to increase the rate of chemical reactions. Enzymes function to create the same reactions using a lower amount of energy. The reactions of catalase play an important role to life, for example, it breaks down hydrogen peroxide into oxygen and water. Our group developed an experiment to test the rate of reaction of catalase in whole carrots and pinto beans with various concentrations of hydrogen peroxide. Almost all enzymes are proteins and proteins are made up of amino acids. The areas within an enzyme speed up the chemical reactions which are known as the active sites, and are also where the
However, at 3% substrate concentration, the hydrogen peroxide decomposition showed an immediate peak of up to 3.8 mm in height. As the substrate concentration slowly increased, enzyme
Peroxidase activity’s optimum pH was found to be pH 5, since the absorbance rate was the highest at 0.3493. Little activity occurred at pH 3, but the absorbance of the reaction with pH 7 rose steadily to 0.99. The rate of absorbance for peroxidase with pH 9 was 0.0097; pH 9 is incapable of accelerating enzyme activity. This suggests that an alkaline pH is inferior to an acidic pH in increasing peroxidase activity, and that the higher the pH level, the poorer the pH boosts the reaction. A highly acidic pH also reduces
The Effect of pH on the Activity of Catalase Planning Experimental Work Secondary Resources Catalase is a type of enzyme found in different types of foods such as potatoes, apples and livers. It speeds up the disintegration of hydrogen peroxide into water because of the molecule of hydrogen peroxide (H2O2) but it remains unchanged at the end of the reaction.
Abstract: Enzymes are catalysts therefore we can state that they work to start a reaction or speed it up. The chemical transformed due to the enzyme (catalase) is known as the substrate. In this lab the chemical used was hydrogen peroxide because it can be broken down by catalase. The substrate in this lab would be hydrogen peroxide and the enzymes used will be catalase which is found in both potatoes and liver. This substrate will fill the active sites on the enzyme and the reaction will vary based on the concentration of both and the different factors in the experiment. Students placed either liver or potatoes in test tubes with the substrate and observed them at different temperatures as well as with different concentrations of the substrate. Upon reviewing observations, it can be concluded that liver contains the greater amount of catalase as its rates of reaction were greater than that of the potato.
Investigating the Effect of Substrate Concentration on Catalase Reaction. Planning -Aim : The aim of the experiment is to examine how the concentration of the substrate (Hydrogen Peroxide, H2O2) affects the rate of reaction. the enzyme (catalase).
This enzyme speeds up the break down of hydrogen peroxide into water and oxygen, as enzymes are biological catalysts. [IMAGE]The reaction: Hydrogen peroxide Water + Oxygen Catalase -------- [IMAGE] 2H2O2 2H2O + O2 Apparatus: Hydrogen Peroxide, Several sticks of celery, Stand, boss and clamp, 100ml conical flask, 25cm3 burette, 1800cm3 beaker, Rubber bung with delivery tube, Distilled water, Large container filled with water, 10cm3 measuring cylinder, 10cm3 syringe, 20cm3 syringe, Blender, Knife, Ceramic tile, Electronic balance (correct to 2 decimal places), Sieve, Stopwatch/timer. The variables: There are many possible variables in this investigation, such as pH, temperature, the concentration of substrate and the concentration of the enzyme.
== == == = This is what I'm going to be changing in the experiment and this will be the temperature and the concentration of the yeast. There are several variables in this experiment, they are: · Amount Used - Too much or too little of the hydrogen peroxide causes the reaction to speed up/slow down producing different amounts of oxygen.
The Effect of Temperature on the Activity of the Enzyme Catalase Introduction: The catalase is added to hydrogen peroxide (H²0²), a vigorous reaction occurs and oxygen gas is evolved. This experiment investigates the effect of temperature on the rate at which the enzyme works by measuring the amount of oxygen evolved over a period of time. The experiment was carried out varying the temperature and recording the results. It was then repeated but we removed the catalase (potato) and added Lead Nitrate in its place, we again tested this experiment at two different temperatures and recorded the results. Once all the experiments were calculated, comparisons against two other groups were recorded.
How the Concentration of the Substrate Affects the Reaction in the Catalase Inside Potato Cells Introduction Enzymes are made of proteins and they speed up reactions, this means that they act as catalysts. Hydrogen peroxide is a byproduct of our cell's activities and is very toxic. The enzymes in our bodies break down the hydrogen peroxide at certain temperatures they work best at body temperature, which is approximately 37 degrees. At high temperatures, the cells begin to denature. This means that the hydrogen peroxide is prevented from being broken down because they will not 'fit' into the enzyme.[IMAGE] Objective I am going to find out how the concentration of the substrate, hydrogen peroxide affects the reaction in the catalase inside the potato cells.
The input variables are the ones that I can change in order to affect the experiment and the outcome variables are the ones I will measure to see how the input variable has affected it. Input Variables --------------- Amount of calcium carbonate Amount of hydrochloric acid Surface area of calcium carbonate Concentration of hydrochloric acid Temperature of hydrochloric acid Introduction of a catalyst Outcome variables ----------------- Amount of calcium chloride released Amount of water released Amount of carbon dioxide released Change in weight
Independent variables: The temperature of hcl gas will be decreased and increased throughout the experiment.