Using the calorimeter, we firstly needed to calibrate the machine; to do this we took a tube of distilled water and tested it; we knew that this should measure 0 because distilled water is completely transparent. We could have done this with any known reference sample. Once we had calibrated the machine we could then test the real samples for their transparency, we tested all five of these samples a total of three times each. Between each different concentration of solution sample we had to re calibrate the machine using the distilled water again, so in total we did 20 colourimetry tests. We gained three results for each concentration of sample and then calculated an average from these three results; these are shown in the table below.
...inty between 1.0% (0.1/10.00*100) and 2.13% in the measured volume and 0.1/4.70*100). We also used a digital thermometer that allowed us to read the temperature readings from five degrees celcius to eighty degrees celcius. Since the digital thermometer have an absolute accuracy of plus or minus one degree celcius, it gives a percent uncertainty between 0.125 % (0.1 / 5.00 * 100) and 0.2 % (0.1/ 80.0 * 100). One of the difficulties we faced during the lab is reading the inverted graduated cylinder. To account for the inverse meniscus, we subtracted 0.2 mL from all the volumetric measurements to account for that. Volumetric uncertainty is the most important in determining the accuracy of this experiment since we are constantly checking for the volume throughout the lab. It also is the factor that gives the highest percent uncertainty out of all the instruments used.
Repeat for each trial. Rinse volumetric pipette with vinegar and drain into the waste beaker. Weigh and record the mass of each 200mL beaker. Add 10.00mL of vinegar into each beaker and weigh them and record their again. Add 50mL of de-ionized water to the beakers and place them under the drop counter on top of a stir plate, submerging the pH meter into the solution. Place the stir bar into the beaker and carefully turn on the stir plate so that the stir bar spins without splashing or hitting the sides of the beaker or the pH
Generally pycnometer is made of glass, with a clos-fitting ground glass stopper with capillary tube through it, so that air bubbles mas escape from the apparatus. This device enables a liquid density to be measured through an appropriate working fluid, such as mercury or water, using analytical balance. When the flask weighed empty, full of water, and full of a liquid whose relative density is desired, then relative density can be easily calculated. The specific gravity results show that subsoil specific gravity varies between 2.45 and 2.7. Pycnometer analysis work system shown in Figure 12.
There can be percentage errors and uncertainties or heat loss in surrounding while executing the experiment.
I made a chart to record how my thermometer measured freezing and boiling water, and proceeded to find the average. I took the average of each, and used them to find the average inaccuracy of the thermometer. I found that the average inaccuracy of the thermometer for freezing water was of by 0.7°C or -0.7°C. The average inaccuracy of the thermometer for boiling water I recorded as off by 1°C or -1°C.
The thermometer, containers, and iron ball were secured of any possible contaminants. The stopwatch was calibrated and checked to be correctly measuring the time in seconds and milliseconds, by comparison with other stopwatches. The thermometer was checked to be accurately measuring the temperature of lukewarm water, and was al...
In this experiment, there were several objectives. First, this lab was designed to determine the difference, if any, between the densities of Coke and Diet Coke. It was designed to evaluate the accuracy and precision of several lab equipment measurements. This lab was also designed to be an introduction to the LabQuest Data and the Logger Pro data analysis database. Random, systematic, and gross errors are errors made during experiments that can have significant effects to the results. Random errors do not really have a specific cause, but still causes a few of the measurements to either be a little high or a little low. Systematic errors occur when there are limitations or mistakes on lab equipment or lab procedures. These kinds of errors cause measurements to be either be always high or always low. The last kind of error is gross errors. Gross errors occur when machines or equipment fail completely. However, gross errors usually occur due to a personal mistake. For this experiment, the number of significant figures is very important and depends on the equipment being used. When using the volumetric pipette and burette, the measurements are rounded to the hundredth place while in a graduated cylinder, it is rounded to the tenth place.
Possible sources of error in this experiment include the inaccuracy of measurements, as correct measurements are vital for the experiment.
3. Add on of the following volumes of distilled water to the test tube, as assigned by your teacher: 10.0mL, 15.0mL, 20.0mL, 25.0mL, 30.0mL. (If you use a graduated cylinder, remember to read the volume from the bottom of the water meniscus. You can make more a more accurate volume measurement using either a pipette or a burette.)
One possible source of experimental error could be not having a solid measurement of magnesium hydroxide nor citric acid. This is because we were told to measure out between 5.6g-5.8g for magnesium hydroxide and 14g-21g for citric acid. If accuracy measures how closely a measured value is to the accepted value and or true value, then accuracy may not have been an aspect that was achieved in this lab. Therefore, not having a solid precise measurement and accurate measurement was another source of experimental error.
In a Styrofoam cup, record the temperature of the 200 ml of cold water. This is 200 g of water, as the density of water is 1 g/ml.
There is also the potential of human error within this experiment for example finding the meniscus is important to get an accurate amount using the graduated pipettes and burettes. There is a possibility that at one point in the experiment a chemical was measured inaccurately affecting the results. To resolve this, the experiment should have been repeated three times.
The last part of experiment 5, was learning about specific gravity and temperature. Specific gravity does not have any units, it is unitless. When measuring for the temperature, we used a thermometer to calculate the Celsius of the water, 10% sodium chloride, and isopropyl alcohol. The specific gravity uses a hydrometer to measure the gravity of the liquids. Using the hydrometer, to figure out the measurements we have to look at it from top to bottom. The water for specific gravity was .998 while the temperature of it was 24