Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Determination of catalase activity practical experiment report
Determination of catalase activity practical experiment report
Determination of catalase activity practical experiment report
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Enzymes are efficient proteins which play a part in cellular metabolic processes. Enzymes have the ability to improve the rate of reactions among living organisms. (Phillips, 2009) Although they work as a part of the reaction, they do not go through lasting alterations and therefore remain unchanged by the end of the reaction. They can only alter the rate of reaction. (Royal Society of Chemistry) Enzyme activity was first studied in a test tube in 1833 by Payen and Persoz.
Temperature, pH, enzyme concentration, substrate concentration, as well as the presence of any inhibitors or activators are all factors which affect the rate at which enzymatic reactions occur. (Worthington, 1972) The three dimensional shapes, particularly the tertiary and quaternary configurations of enzymes also affect their action.
Cells of living organisms such as beef or chicken liver, yeast and potatoes contain the enzyme catalase which will be investigated in this lab. Specifically, this lab works with beef liver extract. Since hydrogen peroxide is a poison to cells, the enzyme found in beef liver destroys it. The equation for the disintegration of hydrogen peroxide into water and oxygen is:
Catalase
2 H2O2 (aq) → 2 H2O2 (l) + O2 (g)
In this lab, the hydrogen peroxide will act as the substrate to the beef liver catalase solution. The rate at which oxygen gas is evolved will be measured to determine the rate at which the enzyme is working. This lab utilizes various elements such as varying temperature, state and concentration to demonstrate how changes can affect the rate of activity. The change in catalase concentration should affect the enzyme rate by increasing as the concentrat...
... middle of paper ...
...le error was Group A. The results were much higher than all of the rest, yet they were in good ratio to each other. This was most likely a timing issue.
For the most part, the results seem to be pretty accurate with the original hypothesises from the beginning. It was originally predicted that the enzyme activity would increase as concentration increased. This was evident. It was also revealed that temperature does affect catalase activity and oxygen production which was also envisaged before the experiments took place.
To conclude, the experiments examining different factors affecting enzyme activity clearly demonstrate a close relationship between enzymes and their specificity. When elements such as concentration, temperature and state are tampered with, the activity is definitely affected. The hypothesis made was very close to the results which were attained.
This indicated that the effect of high temperature on the activity of peroxidase was irreversible and so if the optimum temperature was restored the enzyme activity will not increase again because denaturation resulted in a permanent change in the shape of the active site of the peroxidase enzyme. In conclusion, the results of this experiment supported the hypothesis that enzymes including peroxidase enzyme are sensitive to temperature changes[George
Living organisms undergo chemical reactions with the help of unique proteins known as enzymes. Enzymes significantly assist in these processes by accelerating the rate of reaction in order to maintain life in the organism. Without enzymes, an organism would not be able to survive as long, because its chemical reactions would be too slow to prolong life. The properties and functions of enzymes during chemical reactions can help analyze the activity of the specific enzyme catalase, which can be found in bovine liver and yeast. Our hypothesis regarding enzyme activity is that the aspects of biology and environmental factors contribute to the different enzyme activities between bovine liver and yeast.
Catalase is a common enzyme that is produced in all living organisms. All living organisms are made up of cells and within the cells, enzymes function to increase the rate of chemical reactions. Enzymes function to create the same reactions using a lower amount of energy. The reactions of catalase play an important role to life, for example, it breaks down hydrogen peroxide into oxygen and water. Our group developed an experiment to test the rate of reaction of catalase in whole carrots and pinto beans with various concentrations of hydrogen peroxide. Almost all enzymes are proteins and proteins are made up of amino acids. The areas within an enzyme speed up the chemical reactions which are known as the active sites, and are also where the
The shape of the molecules is changing and so the enzyme molecules can no longer fit into the gaps in the substrate that they need to and therefore the enzymes have de – natured and can no longer function as they are supposed to and cannot do their job correctly. Changing the temperature: Five different temperatures could be investigated. Water baths were used to maintain a constant temperature. Water baths were set up at 40 degrees, 60 degrees and 80 degrees (Celsius). Room temperature investigations were also carried out (20 degrees).
The optimum temperature for peroxidase activity, 23°C, was determined by taking the highest rate of absorbance of the four temperature reactions
Enzymes are biology catalysts which speed up the rate of a reaction (BBC News). Catalase is an enzyme which is found in one’s body and can destroy any harmful substances. Without catalase, many toxic materials could attack and mutate DNA. Catalase is located in the hepatic and when mixed with hydrogen peroxide, it breaks it down into oxygen and water. When the reaction happens it follows this equation: 2H2O2 → 2H2O + O2 ("Catalase.").
This hurdle is called the activation energy of the reaction. [IMAGE] By decreasing the activation energy, more substrate is changed to product in a certain amount of time. That is, the enzyme increases the rate of the reaction. [IMAGE] The activity of catalase can be measured by finding the rate of which the oxygen gas is released from the breakdown of Hydrogen Peroxide.
needed to activate the reacting molecules. They are specific that usually act on only one type of substrate, so each of them just. perform one particular reaction. Furthermore, only a small amount of enzyme is needed every time to speed up a reaction. Enzymes are globular proteins that have a precise three-dimensional structure.
Purpose: This lab gives the idea about the enzyme. We will do two different experiments. Enzyme is a protein that made of strings of amino acids and it is helping to produce chemical reactions in the quickest way. In the first experiment, we are testing water, sucrose solution, salt solution, and hydrogen peroxide to see which can increase the bubbles. So we can understand that enzyme producing chemical reactions in the speed. In the second experiment, we are using temperature of room, boiling water, refrigerator, and freezer to see what will effect the enzyme.
Investigating Factors that Affect the Rate of Catalase Action Investigation into the factors which affect the rate of catalase action. Planning Aim: To investigate the affect of concentration of the enzyme catalase on the decomposition reaction of hydrogen peroxide. The enzyme: Catalase is an enzyme found within the cells of many different plants and animals. In this case, it is found in celery.
Enzymes are biological catalysts - catalysts are substances that increase the rate of chemical reactions without being altered itself. Enzymes are also proteins that fold into complex shapes that allow smaller molecules to fit into them. The place where these substrate molecules fit is called the active site. The active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of residues that form temporary bonds with the substrate and residues that catalyse a reaction of that substrate. (Clark, 2016)
The Effect of Temperature on the Activity of the Enzyme Catalase Introduction: The catalase is added to hydrogen peroxide (H²0²), a vigorous reaction occurs and oxygen gas is evolved. This experiment investigates the effect of temperature on the rate at which the enzyme works by measuring the amount of oxygen evolved over a period of time. The experiment was carried out varying the temperature and recording the results. It was then repeated but we removed the catalase (potato) and added Lead Nitrate in its place, we again tested this experiment at two different temperatures and recorded the results. Once all the experiments were calculated, comparisons against two other groups were recorded.
Many factors, for example, pH and temperature affects the way enzymes work by either increasing the rate or determining the type of product produced (). The report, therefore, analyses the effects of the enzyme peroxidase in metabolic reactions and determining its optimum temperature in the reactions.
Enzymes are very specific in nature, which helps them in reactions. When an enzyme recognizes its specific substrate, the enzyme binds to the substrate in a region called the active site which is made of amino acids. Once the substrate binds, the enzyme changes its shape slightly to make an even tighter fit around the substrate, This is called induced fit and it allows for the enzyme to catalyze the reaction more easily. Another factor contributing to catalyses is the amount of substrate present; the more substrate molecules available, the more often they bind the active site. Once all of the enzyme's active sites are occupied by substrate, the enzyme is saturated ( Campbell 99). Enzyme's have optimal conditions under which they perform. These include temperature, pH, and salt concentration, amongst others. In this lab we only focused on pH and temperature. Each enzyme is specific to a certain optimal temperature and pH. When conditions are favorable, the reaction takes place at a faster rate, allowing for more substrates to collide with active sites of enzymes. However, if conditions get too extreme, the enzyme...
From looking at the results I can conclude that when the pH was 3 and 5. No oxygen was produced, therefore no reactions were taking place. This was because the pH had a high hydrogen ion content, which caused the breaking of the ionic bonds that hold the tertiary structure of the enzyme in place of the syringe. The enzyme lost its functional shape.