Introduction
Computed tomography (CT) and Radionuclide imaging (RNI) are both a form of diagnostic imaging. Since they have been first introduced in medical imaging they both suffered a huge development over the years in terms of image acquisition and also patient radiation protection. The following essay it is going to focus on just a few important things that make CT and RNI similar and different in the same time. However this subject can be discussed in much depth, the focus is going to be on the similarities and differences of the physics imaging methods and also a small awareness of biological effects and radiation protection.
As a starting point in CT diagnostic imaging the form of radiation used to provide an image are x-rays photons , this can also be called an external radiation dose which detect a pathological condition of an organ or tissue and therefore it is more organ specific. However the physics process can be described as the radiation passes through the body it is received by a detector and then integrated by a computer to obtain a cross-sectional image (axial). In this case the ability of a CT scanner is to create only axial two dimensional images using a mathematical algorithm for image reconstruction. In contrast in RNI the main property for producing a diagnostic image involves the administration of small amounts of radiotracers or usually called radiopharmaceutical drugs to the patient by injection or oral. Radio meaning the emitted of gamma rays and pharmaceutical represents the compound to which a nuclide is bounded or attached. Unlike CT has the ability to give information about the physiological function of a body system. The radiopharmaceutical often referred to as a nuclide has the ability to emit ga...
... middle of paper ...
...s in one direction to acquire a single image slice. For another slice to be imaged the x-ray tube would again rotate another 360 degrees but on opposite direction. However this has been changed over the years and has been implemented a Slip-Ring technology which replaced the old high tension cables. In this way the new CT scanner x-ray tube had the ability to rotate continuously around the patient and in the same time the table was moving through the gantry to acquire data in a form of a Spiral or Helical. Therefore the new generation of CT scanners is called Spiral or Helical CT. The advantages of the new scanners are that the volume data can be reconstructed in any other planes (sagittal, coronal and three dimensional images), also there is a short time scan therefore radiation to the patient is minimized and also the artefact caused by patient motion is reduced.
Apart of becoming a new patient at a dental office is taking an x-ray and some may have question along with taking an x-ray, like “will I be affected by the x-ray?” or “will I get cancer?”, “how long will it take” “are x-ray’s safe?”, the list goes on and on. So in this paper we will talk about different types of radiation affects such as affects on children and pregnant women as well as some things that may help reduce some of the radiation that may harm the human body.
The description of PET scans in detail requires the understanding of the radioactive substance injected into the subject. First, a small amount of a biochemical substance is tagged with a positron-emitting radioisotope. A positron is an “anti-electron.” Positrons are given off during the decay of the nuclei of the radioisotope. When the positron emitted collides with an electron in the tissue of the subject, both the positron and the electron are annihilated. When this happens, the collision produces two gamma rays having the same energy (511 KeV), but going in opposite directions.
Johnston, J. (2012). Essentials of Radiographic Physics and Imaging. St Loius, Missouri: Elsevier Mosby Publishing.
Radiology is one of the few so-called “physical-science”-based fields of medicine, making it a challenging and rewarding application of an academic interest in science. It combines advanced knowledge of human physiology with principles of atomic physics and nuclear decay, electricity and magnetism, and both organic and inorg...
What is radiology? Radiology is a branch of medical science that makes the use of radiation and radioactive materials. Radiology is related to energy- related physical phenomena in the diagnosis and treatment of particular diseases. Two major therapy- related areas of radiology are so- called therapeutic radiology. Therapeutic radiology deals particularly with the use of ionizing radiation is to treat cancer, and interventional radiology, Which radiological imaging techniques are used to assist various minimally invasive surgical procedures.
Radiation is something that the naked eye cannot see, yet has the potential to save lives one treatment at a time or even one image at a time. Since the discovery of x-rays in 1895, it has branched out into numerous modalities each independently specializing in their own ways. X rays are used to aid in the diagnosis and treatments of patients on a case by case scenario. Sometimes doctors can make a diagnosis on the same day or conclude that a patient will require radiation therapy within weeks to follow. Whatever it may be, the importance of x rays and radiation itself is a crucial part of the medical field when it comes to saving lives. Initially it all started with the discovery of x rays but then three years later radiation therapy was introduced to aid with
To begin with, how has technology changed the field of radiology? Since the discovery of X-radiation there has been a need and desire for studying the human body and the diseases without actually any intervention. Over the past fifty years there has been a revolution in the field of radiology affecting medicine profoundly. “The ability to produce computers powerful enough to reconstruct accurate body images, yet small enough to fit comfortably in the radiology department, has been the major key to this progress”(Gerson 66). The core of radiology’s vast development consists of four diagnostic techniques: computed tomography (CT), digital subtraction angiography (DSA), ultrasonography, and magnetic resonance imaging (MRI). These methods of diagnostic imaging provide accurate information that was not seen before. Amid this information advancement, radiologists have broadened their role of diagnostician. Gerson writes, “With the advent of computer-enhanced imagery and new interventional techniques, these physicians are able to take an active part in performing therapeutic procedures”(66). A radiology breakthrough in 1972 was computed tomography discovered by Godfrey Hounsfield and Allan Cormack. Unlike standard radiography, computed tomography would spin the X-ray tube 360 degrees and inversely another 360 degrees while the patient ta...
Radiation therapists work closely with patients to fight cancer. According to Health Care Careers, Oncologists, Dosimetrists and nurses are some of the professionals that a radiation therapist works with while caring for a cancer patient. This group of professionals will determine a specialized treatment plan. The first step usually includes a CT scan performed by a radiologist to find the exact area that needs to be targeted with x-rays. Next, the therapist uses a special machine that emits radiation called a Linear Accelerator. They use this machine during a treatment called external beam therapy. During this process, the Linear Accelerator will project x-rays at targeted cancer cells or tumors. Another therapist will be in a different room monitoring the patient’s viral signs until the procedure is over. The external therapy l...
One of the most recently new advances in radiology is the use of magnetic resonance imaging (MRI). MRI has been around for the past century. It was at first called Nuclear Magnetic Resonance (NMR) and then it changed to MRI once there was an available image. Walter Gerlach and Otto Stern were the first scientists to start experimenting with the magnetic imaging. Their very first experiment was looking at the magnetic moments of silver by using some type of x-ray beam. The scientists then discovered this was by realizing that the magnetic force in the equipment and in the object itself. In 1975, the first image was finally created using and MRI machine. The scientists used a Fourier Transformation machine to reconstruct images into 2D. The first images ever use diagnostically was in 1980. This is when hospitals began to use them. At first the images took hours to develop and were only used on the patients that needed it most. Even though MRI has been around for a long time, it has advanced and has been one of the best imaging modalities recently (Geva, 2006).
The role of the radiologist is one that has undergone numerous changes over the years and continues to evolve a rapid pace. Radiologists specialize in the diagnoses of disease through obtaining and interpreting medical images. There are a number of different devices and procedures at the disposal of a radiologist to aid him or her in these diagnoses’. Some images are obtained by using x-ray or other radioactive substances, others through the use of sound waves and the body’s natural magnetism. Another sector of radiology focuses on the treatment of certain diseases using radiation (RSNA). Due to vast clinical work and correlated studies, the radiologist may additionally sub-specialize in various areas. Some of these sub-specialties include breast imaging, cardiovascular, Computed Tomography (CT), diagnostic radiology, emergency, gastrointestinal, genitourinary, Magnetic Resonance Imaging (MRI), musculoskeletal, neuroradiology, nuclear medicine, pediatric radiology, radiobiology, and Ultrasound (Schenter). After spending a vast amount of time on research and going to internship at the hospital, I have come to realize that my passion in science has greatly intensified. Furthermore, both experiences helped to shape up my future goals more prominently than before, which is coupled with the fact that I have now established a profound interest in radiology, or rather nuclear medicine.
Nuclear Medicine is the use of radioisotopes for diagnosis, treatment, and research. Radioactive chemical tracers emit gamma rays which provides diagnostic information about a person's anatomy and the functioning of specific organs. Radioisotopes are also utilizes in treatments of diseases such as cancer. It is estimated that approximately one in two people in Western countries are likely to experience the benefits of nuclear medicine in their lifetime.
CTscans stands for “Computed Tomography”. It is a way of looking inside your body using a special camera. It is an advanced scanning x-ray and computer system that makes detailed pictures of horizontal cross-sections of the body, or the part of the body that is x-rayed. A CT scan is a diagnostic test that combines the use of x-ray with computer technology. A series of x-beams from many different angles are used to get these cross-sectional images of the patient’s body. In a computer, these pictures are assembled into a 3-dimentianal picture that can display organs, tissues, bones, and any such thing. It can even show ducts, blood vessels and tumors. One of the advantages of CT is that it clearly shows soft tissue structures (such as brain), as well as dense tissue structure (such as bone). The pictures of a Ctscanner are a lot more detailed than the pictures of a regular X-ray machine. It can make pictures of areas protected or surrounded by bones, which a regular X-ray machine can not. Because of this, a CT scanner is said to be 100 times as affective and clever as an ordinary X-ray, and can therefore diagnose some diseases a lot earlier and quicker. It is recent technology that has made it possible to accurately scan objects into a computer in three dimensions, even though the machines and ideas were developed in the 1970s. In the 70s doctors started to use this new type of machine that could give detailed pictures of organs that the older type of x-ray, machine could not give.
Radioisotopes have helped create advanced imaging techniques. Beforehand, X rays could only provide so much information such as broken bones, abnormal growths, and locating foreign objects in the body. Now it is possible to obtain much more information from medical imaging. Not only can this advanced imaging give imaging of tiny structures in the body, but it can also provide details such as cancerous cells and damaged heart tissue from a heart...
Radiology technology is a science of using radiation to produce images. There are many jobs you can perform in diagnostic imaging usually a radiologic technologist will oft...
An important change came about with the development and common use of computer technology. “Such use of a filmless radiology department was very interesting to this medical field. Digital radiography was introduced in the mid 1980’s and now competes with screen film radiography in all radiographic applications” (Bansal, 2006).