Photochemical Smog

:: 3 Works Cited
Length: 1721 words (4.9 double-spaced pages)
Rating: Excellent
Open Document
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Text Preview

More ↓

Continue reading...

Open Document

Photochemical Smog

Historically, the term smog referred to a mixture of smoke and fog, hence the
name smog. The industrial revolution has been the central cause for the increase
in pollutants in the atmosphere over the last three centuries. Before 1950, the
majority of this pollution was created from the burning of coal for energy
generation, space heating, cooking, and transportation. Under the right
conditions, the smoke and sulfur dioxide produced from the burning of coal can
combine with fog to create industrial smog. In high concentrations, industrial
smog can be extremely toxic to humans and other living organisms. London is
world famous for its episodes of industrial smog. The most famous London smog
event occurred in December, 1952 when five days of calm foggy weather created a
toxic atmosphere that claimed about 4000 human lives. Today, the use of other
fossil fuels, nuclear power, and hydroelectricity instead of coal has greatly
reduced the occurrence of industrial smog. However, the burning of fossil fuels
like gasoline can create another atmospheric pollution problem known as
photochemical smog. Photochemical smog is a condition that develops when primary
pollutants (oxides of nitrogen and volatile organic compounds created from
fossil fuel combustion) interact under the influence of sunlight to produce a
mixture of hundreds of different and hazardous chemicals known as secondary
pollutants. Development of photochemical smog is typically associated with
specific climatic conditions and centers of high population density. Cities
like Los Angeles, New York, Sydney, and Vancouver frequently suffer episodes of
photochemical smog.

One way in which the production of photochemical smog is initiated is through
the photochemical reaction of nitrogen dioxide (NO2) to form ozone. There are
many sources of photochemical smog, including vehicle engines (the number one
cause of photochemical smog), industrial emissions, and area sources (the loss
of vapors from small areas such as a local service station, surface coatings and
thinners, and natural gas leakage).

Vehicle engines, which are extremely numerous in all parts of the world, do not
completely burn the petroleum they use as fuel. This produces nitrogen dioxide
which is released through the vehicle exhaust along with a high concentration of
hydrocarbons. The absorption of solar radiation by the nitrogen dioxide results
in the formation of ozone (O3). Ozone reacts with many different hydrocarbons to
produce a brownish-yellow gaseous cloud which may contain numerous chemical
compounds, the combination of which, we call photochemical smog.

Both types of smog can greatly reduce visibility. Even more importantly, they
pose a serious threat to our health. They form as a result of extremely high
concentrations of pollutants that are trapped near the surface by a temperature

How to Cite this Page

MLA Citation:
"Photochemical Smog." 123HelpMe.com. 20 Jul 2017
    <http://www.123HelpMe.com/view.asp?id=81405>.
Title Length Color Rating  
Photochemical Smog Essay examples - Photochemical Smog is made up of primary and secondary pollutants. Primary pollutants are released into the environment by vehicles, industry and natural environments. Primary Pollutants Industry Related Vehicle Related Natural Processes Sulfur Dioxide Hydrocarbons Sulfur Oxides Nitrogen Dioxide Nitric Oxide Carbon Dioxide Carbon Monoxide Carbon Monoxide Volcanic Dust Hydrogen Sulfide Smoke Secondary pollutants form when primary pollutants react in the atmosphere, such as the presence of direct sunlight....   [tags: Pollution, environment, atmosphere] 694 words
(2 pages)
Strong Essays [preview]
Smog Essay - Smog, as defined by Dictionary.com, is fog that has become mixed and polluted with smoke. The word smog was coined in 1905 in a newspaper report of a meeting of the Public Health Congress, in which Dr. H.A. des Voeux gave a paper entitled "Fog and Smoke." On July 26, 1905, Dr. des Voeux was quoted in the Daily Graphic stating, " it required no science to see that there was something produced in great cities which was not found in the country, and that was smoky fog, or what was known as `smog.'" There are two commonly known types of smog, industrial smog and photochemical smog....   [tags: Environmental, Air Pollution] 1231 words
(3.5 pages)
Good Essays [preview]
Essay The Problem With Smog - The beautiful mountain ranges surrounding the Los Angeles region make a magnificent view, but unfortunately the smog problem in Los Angeles prevents everyone from enjoying this. Smog is a large environmental problem that needs to be concentrated on to find solutions. The media, which includes television, newspaper, magazines, and organizations, is delivering messages to inform the public concerning smog, but are these messages expressing the true environmental issues about smog. In the present day world, the media does not adequately explain any environmental issue....   [tags: Pollution Essays] 1778 words
(5.1 pages)
Strong Essays [preview]
Essay on Smog Does Nobody Good - As of April 2000, Houston, Texas flunked the air quality test given by the American Lung Association of Texas. The city was carefully being watched because of the alarming reports taken from 1996-1998. Houston’s smog and ozone levels have now surpassed Los Angeles’s notorious air pollution problem. They must take advice from this infamously polluted city without slowing down the economic growth of their port city. They could reduce the traffic on the ship channel and the city’s highways, or create a better mass transit system but, just by shrinking the number of commuters or how much pollution factories are allowed to make in one day, it will not necessarily permanently fix the problem....   [tags: essays research papers fc]
:: 2 Works Cited
1331 words
(3.8 pages)
Better Essays [preview]
Essay on Phytochemical & Antioxidant Activity - 3. Results and Discussion 3.1. Phytochemical analysis Phytochemicals, especially phenolics are known to be major bioactive compounds for health benefits. Plant extracts containing different classes of polyphenols are very attractive in the food industry. Therefore, in this study, the total phenolics content and total flavonoids content of the faba beans’ extract were investigated. Folin-Ciocalteu phenol method estimated a total phenolic content of 22.415 GAE equivalents (µg GAE/mg sample). The presence of a high phenolic amount in the faba seeds indicates its potential as a good natural antioxidant....   [tags: UNderutilized Legume Vicia Faba Seeds]
:: 28 Works Cited
1457 words
(4.2 pages)
Powerful Essays [preview]
Essay on The Acidic Environment Around Us - ... Another indicator that shows the acidic oxides increasing in the atmosphere is the formation of photochemical smog from NO2 which indicates the excessive levels of nitrogen oxides in the atmosphere. The impacts of the increasing acidic oxides is great which is seen in the incident in 1952 “Great Smog of December “ which killed 4000 people due to the effects of sulfur and nitrogen compounds in the air. An increase of acid rain is one of the great concerns as the increase of acid rain indicates the increasing concentrations of sulfur dioxide and nitrogen oxide compounds....   [tags: oxides, atmosphere, rain] 1334 words
(3.8 pages)
Research Papers [preview]
Air Pollution, Smog, Acid Rain, the Greenhouse Effect, and Ozone Depletion - Air pollution is a well-known problem throughout the world. Humans know that we are the major cause for air pollution and although we know this fact, we continue to pollute. We poison our air every day by throwing out enormous piles of garbage, burning tons of fossil fuels, and driving millions of miles each year, but do we truly know how much this affects our society and our Earth. Smog, acid rain, the greenhouse effect, and ozone depletion are some of the effects that have resulted from air pollution....   [tags: Environmental Pollution, Global Warming]
:: 5 Works Cited
1340 words
(3.8 pages)
Strong Essays [preview]
Carbon Dioxide: A Renewable Resource? Essay - Picture smog filled cities being pollution free, while producing clean biofuel and oxygen. Highly polluted areas, such as the Los Angeles area, pose a threat to the elderly, children, and people suffering with COPD (Chronic Obstructive Pulmonary Disease) (“People at Risk,” 2013). Algae can be used to harness the carbon dioxide, nitrogen, make oxygen and be refined for biofuel. Cyanobacteria is the most common type of microalgae used for biofuel (“Massachusetts company making,” 2011) The biofuel from algae can be cost effective, only costing ten to twenty dollars a barrel to produce....   [tags: environment, clean biofuel, oxygen]
:: 16 Works Cited
1241 words
(3.5 pages)
Strong Essays [preview]
Global Warming is False Essay - A Flawed Opinion Whenever someone thinks of CO2, they think of global warming. They are reminded of Al Gore and his stance on global warming and they automatically think it is true. He has a lot of evidence to back up his theory about how global warming exists and that it is the reason animals are going extinct and also why the climate is changing. Well these facts are wrong and there is evidence to prove it. Global warming is not real and the Earth might even be in a cooling period. There so many reasons to blame people for the epidemic of this false global warming....   [tags: Environment Climate Change]
:: 5 Works Cited
1727 words
(4.9 pages)
Powerful Essays [preview]
Trophosperic Ozone Essay - The source of the tropospheric ozone The tropospheric ozone has two major sources. One is intrusion from the stratosphere. Most of ozone in the atmosphere is in the stratosphere and created from solar UV radiation. The stratospheric ozone sometimes flows into the troposphere by the upper layer trough and cut-off low activities. Some part of ozone may subside in the troposphere directly by the Hadley circulation or the Brewer Dobson circulation. Another source is production from photochemical reactions....   [tags: essays research papers] 970 words
(2.8 pages)
Strong Essays [preview]

Related Searches




inversion. Many of the components which make up these smogs are not only
respiratory irritants, but are also known carcinogens.

There are many conditions for the development of photochemical smog:

1. A source of nitrogen oxides and volatile organic compounds.

2. The time of day is a very important factor in the amount of photochemical
smog present.

• Early morning traffic increases the emissions of both nitrogen oxides (NOx)
and Peroxyacetyl Nitrates (PAN) as people drive to work.
• Later in the morning, traffic dies down and the nitrogen oxides and
volatile organic compounds begin to react forming nitrogen dioxide, increasing
its concentration.
• As the sunlight becomes more intense later in the day, nitrogen dioxide is
broken down and its by-products form increasing concentrations of ozone.
• At the same time, some of the nitrogen dioxide can react with the volatile
organic compounds (VOCs) to produce toxic chemicals.
• As the sun goes down, the production of ozone is halted. The ozone that
remains in the atmosphere is then consumed by several different reactions.

3. Several meteorological factors can influence the information of photochemical
smog. These conditions include :

• Precipitation can alleviate photochemical smog as the pollutants are washed
out of the atmosphere with the rainfall.
• Winds can blow photochemical smog away replacing it with fresh air. However,
problems may arise in distant areas that receive the pollution.
• Temperature inversions can enhance the severity of a photochemical smog
episode. Normally, during the day the air near the surface is heated and as it
warms it rises, carrying the pollutants with it to higher elevations. However,
if a temperature inversion develops pollutants can be trapped near the Earth's
surface. Temperature inversions cause the reduction of atmospheric mixing and
therefore reduce the vertical dispersion of pollutants. Inversions can last from
a few days to several weeks.

4. Topography is another important factor influencing how severe a smog event
can become. Communities situated in valleys are more susceptible to
photochemical smog because hills and mountains surrounding them tend to reduce
the air flow, allowing for pollutant concentrations to rise. In addition,
valleys are sensitive to photochemical smog because relatively strong
temperature inversions can frequently develop in these areas.
Possible Solutions

A possible solution to the problem of photochemical smog is to enforce stricter
emission laws all over the globe. Many countries have varying laws on the legal
limits of NOx, Carbon Dioxide, and Sulfur Dioxide. For example, the United
States has a lower legal limit for CO2 than Mexico, which is just south of the
U.S. My point is that you can go from one country to another, and notice the
differences between the two levels of photochemical smog. If the world were to
enforce the same legal smog levels, we wouldn’t have to worry about
concentrations of smog in some places more than others.

Another possible solution is to come up with a cleaner burning fuel for
automobiles. Some cars already are being experimented running hydrogen,
electricity, solar power, and even water. The problem is that these automobiles
are not in mass production, therefore, leaving the world to rely on
gasoline/diesel as the primary source for power. If the world were to accept
the hydrogen car or electric car more openly and develop them for mass
production, we would have lower levels of the photochemical pollutants
altogether

Abstract 1

"Photochemical Smog and the Okanagan Valley"

Photochemical smog can be a significant pollution problem in the Okanagan Valley.
The Okanagan meets all the requirements necessary for the production of
photochemical smog, especially during the summer months. During this time period
there is an abundance of sunlight, temperatures are very warm, and temperature
inversions are common and can last for many days. The Okanagan Valley also has
some very significant sources of nitrogen oxides and volatile organic compounds,
including:

1. High emissions of nitrogen oxides and volatile organic compounds primarily
from burning fossil fuels in various forms of transportation.

2. The release of large amounts of nitrogen oxides and volatile organic
compounds into the atmosphere from forestry and agriculture. Forestry
contributes to the creation of photochemical smog creation in two ways: the
burning of slash from logging; and, the burning of woodchip wastes in wood
product processing plants. Agriculture produces these chemicals through the
burning of prunings and other organic wastes.

The idea that the Okanagan is immune to the big city problems of photochemical
smog may simply be wishful thinking. In fact, recent monitoring of ground level
ozone has shown that the values between here and the Lower Mainland are quite
comparable. In addition, research over a 4 year period (1985-1989) has shown
that ozone levels can at times be higher over the Okanagan Valley than the Lower
Mainland of British Columbia by almost 49 %.

Abstract 2

"The Photochemical Problem in Perth"

The Perth Photochemical Smog Study, a joint effort of Western Power Corporation
and the Department of Environmental Protection (DEP), was undertaken to
determine, for the first time, the extent to which photochemical smog had become
a problem in Perth.

Measurements of photochemical smog in Perth's air began in 1989, at a single
site in the suburb of Caversham, 15 kilometers north-east of the city center.
Despite the common perception that Perth is a windy city and therefore not prone
to air pollution, the first summer of measurements revealed that the city was
sometimes subjected to smog levels which approached or exceeded the guidelines
recommended by the National Health and Medical Research Council of Australia
(NHMRC).

In 1991 the State Energy Commission of Western Australia (SECWA, now Western
Power Corporation) sought to extend the capacity of the gas turbine power
station it operated at Pinjar, some 40 kilometers north of the Perth central
business district. In view of the Caversham data, the Environmental Protection
Authority expressed concern that increasing the NOx emissions at Pinjar could
contribute to Perth's emerging photochemical smog problem which, at that stage,
was poorly defined.

A consequent condition on the development at Pinjar was that SECWA undertake a
study of the formation and distribution of photochemical smog in Perth, a
particular outcome of which would be to determine the effect of the Pinjar power
station's emissions on smog in the region.

Given the DEP's concerns and responsibility in relation to urban air quality,
the Perth Photochemical Smog Study (PPSS) was developed as a jointly operated
and managed project, funded by SECWA and with DEP contributing facilities and
scientific expertise.

The primary objective of the Perth Photochemical Smog Study was to measure, for
the first time, the magnitude and distribution of photochemical smog
concentrations experienced in the Perth region and to assess these against
Australian and international standards, with consideration given to health and
other environmental effects.

The study's monitoring and data analysis program was very successful in defining
the distribution of Perth's smog. The Perth region experiences photochemical
smog during the warmer months of each year. On average, during the three year
period July 1992 to June 1995, there have been 10 days per year on which the
peak hourly ozone concentration exceeded 80 parts per billion (ppb) somewhere
over the Perth region.

Bibliography

1. Cope, M.C. and Ischtwan, J., 1995, "Perth Photochemical Smog Study, Airshed
Modelling Component", EPA of Victoria, August 1995.

2. Minderly, Calvin 1995, "Photochemical Smog and the Okanagan Valley",
Okanagan University Publishings, June 7-8, 1995.

3. Pidwirny, Michael, Gow, Tracy, et al. "Photochemical Smog", Microsoft
Encarta 1996 Multimedia Encyclopedia. Microsoft Corporation, 1996.

4. Woodward, A.J., Calder, I., McMichael, A.J., Pisaniello, D., Scicchitano, R.,
Steer, K. and Guest, C.S., 1996, "Options for Revised Air Quality Goals for
Ozone (Photochemical Oxidants)", Project Report to the British Commonwealth
Department of Health, Housing and Community Services, August 1993.


Return to 123HelpMe.com