Photosynthesis in Relation to Light, Temperature and Water
Light has three principal characteristics that affect plant growth:
quantity, quality, and duration.
Light quantity refers to the intensity or concentration of sunlight
and varies with the season of the year. The maximum is present in the
summer and the minimum in winter. The more sunlight a plant receives
(up to a point), the better capacity it has to produce plant food
through photosynthesis. As the sunlight quantity decreases the
photosynthetic process decreases. Light quantity can be decreased in a
garden or greenhouse by using shade-cloth or shading paint above the
plants. It can be increased by surrounding plants with white or
reflective material or supplemental lights.
Light quality refers to the colour or wavelength reaching the plant
surface. Sunlight can be broken up by a prism into respective colours
of red, orange, yellow, green, blue, indigo, and violet. On a rainy
day, raindrops act as tiny prisms and break the sunlight into these
colours producing a rainbow. Red and blue light have the greatest
effect on plant growth. Green light is least effective to plants as
most plants reflect green light and absorb very little. It is this
reflected light that makes them appear green. Blue light is primarily
responsible for vegetative growth or leaf growth. Red light when
combined with blue light encourages flowering in plants. Fluorescent
or cool-white light is high in the blue range of light quality and is
used to encourage leafy growth. These lights are excellent for
starting seedlings. Incandescent light is high in the red or orange
range but generally produces ...
... middle of paper ...
...ntioned earlier, water is a primary component of photosynthesis.
It maintains the turgor pressure or firmness of tissue and transports
nutrients throughout the plant. In maintaining turgor pressure, water
is the major constituent of the protoplasm of a cell. By means of
turgor pressure and other changes in the cell, water regulates the
opening and closing of the stomata, thus regulating transpiration.
Water also provides the pressure to move a root through the soil.
Among water's most critical roles is that of a solvent for minerals
moving into the plant and for carbohydrates moving to their site of
use or storage. By its gradual evaporation of water from the surface
of the leaf, near the stomata, helps stabilize plant temperature.
So, in conclusion, Light, Temperature and water all affect the rate of
photosynthesis.
The goal of the experiment was to determine if green light had less ability to absorb than red light in spinach leaves. This was done by separating the photosynthetic pigments (chlorophyll a, chlorophyll b, carotene and xanthophylls) from one another using paper chromatography. The separated pigments were then analyzed for their absorption spectrum using a spectrographometer. When the data was graphed it clearly showed the higher rate of red light absorption over green light. These results along with previous research indicate the importance of red light in photosynthesis and the minor role green light plays.
DPIP will be used to determine the rate at which the cholorplasts are being reduced. The spectrophotometer will establish the wavelength of light that penitrats the chloroplast solution in turn determining the amount of electrons reduced. In the dark reactions, the spectrophotometer will measure the amount of light passing through a darker solution of DPIP and chloroplasts. In the light reactions, the lighter solution, caused by reduction of the chloroplasts, will allow a larger amount of light to pass through to the photocell of the spectrophotometer. Thus, the spectrophotometer will prove wheter the light or dark reactions affect the rate of photosynthesis in chloroplasts. We will also be using a reference solution made of water, phosphate buffer, and active chloroplasts. The purpose of this solution will be used to set the transmittance level for the experiment. The control solution, which is different than the reference solution, is comprised of water, phosphate buffer, and DPIP. It will be used to prove that the three element of the solution do affect the results- it is strictly the chloroplasts that are subjected to the light/dark conditions.
at the small end of the axis to see a more reliable pattern. I could
This shows that there could be three variables in this experiment, carbon dioxide, water and light energy. So in our case the variable light energy (light intensity) will be used. The equation also shows that if there is more light energy then more glucose and oxygen will be produced.
It can be concluded that chloroplast is responsible for photosynthesis, with blue light forming the highest rate of photosynthetic activity. The widespread use of coloured netting in the future could result in indoor plant growth that is unreliant on weather, and the ease of the production of crops with the desirable phenotypes. However, future research is still required to eradicate any unknown data and determine plant responses in relation to wavelength
The Effect of Light Intensity on the Rate of Oxygen Production in a Plant While Photosynthesis is Taking Place
During the following lab, an aquatic plant was covered with a funnel and was placed underwater inside a beaker, with a graduated cylinder (submerged in water) was placed over the neck of the funnel. This lab tested out which source of light which is the independent variable would allow the aquatic plant to produce the most bubbles (dependent variable) and photosynthesize the fastest. This is clearly displayed because when photosynthesis is produced underwater it appears in the form of bubbles inside the water. These bubbles will travel up through the funnel and displace the water in the graduated cylinder. The dependent variable was tested by placing the four, 5cm aquatic plants in the beakers directly in front of the sources of light and observing how many bubbles were produced within the period of 10 minutes and how much water was displaced by the oxygen bubbles. The beaker in front of the light source with the most bubbles produced and with the most displaced water performed photosynthesis faster than all the other light sources. The sources of light used for this lab were sunlight, florescent, red, and yellow lamp lights, and
Ghosh, Paramita. "Importance of Photosynthesis." Buzzle. Buzzle.com, 14 Apr. 2008. Web. 19 May 2014. .
To make the test fair I will use the same amount of water and the leaf
Photosynthesis is a highly important process that takes place in plants primarily because without it life on this planet would not be able to function properly. “It produces the oxygen we breathe and the food we eat” (Harbinson). Without photosynthesis, life would not be able to sustain itself and our planet would be a barren wasteland. The Photosynthetic process converts light energy into chemical energy. The energy that’s created through the process then later is used to help fuel the organism’s activities. This process can be significantly more complicated than it sounds with different stages and many steps.
The Effect of Light Intensity on the Rate of Photosynthesis in an Aquatic Plant Introduction The input variable I will be investigating is light, as light is just one of the 4 factors required in the green-plant process of photosynthesis. Photosynthesis is the process by which green-plants use sunlight, carbon dioxide, water & chlorophyll to produce their own food source. This process is also affected by the temperature surrounding the plant (the species of plant we experimented with, pond weed, photosynthesised best at around 20 degrees centigrade.) Light, temperature & CO2 are known as limiting factors, and each is as important as the next in photosynthesis. Light is the factor that is linked with chlorophyll, a green pigment stored in chloroplasts found in the palisade cells, in the upper layer of leaves.
The Effect of Wavelength on Photosynthesis Rate Aim: To be able to To investigate how different wavelengths (colors) of light affect the photosynthetic rate of the synthetic. I will use a pant that is a pond weed called elodea. I will measure the rate of photosynthesis by measuring the amount of o2 given off in bubbles per minute from the elodea. I will do this by placing the Elodea in a test tube with sodium hydrogen. carbonate then I will vary the light wavelength (color) using colored.
Light is a very important factor in the rate of photosynthesis, in my project I am going to test that plants do need light in order to photosynthesise. It will be very interesting to see how light will influence the rate of photosynthesis in plants and what will happen if they do not get the required light in order to produce starch .
Photosynthetic pigments are essential for life because they allow photosynthesis to occur by capturing sunlight which is then used alongside carbon dioxide and water to form organic compounds such as glucose and oxygen. The pigments allow the conversion of light energy to chemical energy which other organisms can benefit from. Oxygen is utilised by other organisms in aerobic respiration. The different pigments present in the chloroplasts allow a wide variety of wavelengths of light to be absorbed for efficient photosynthesis and provide colours to the plant to attract pollinators.
Increases in temperature can decrease the efficiency of photosynthesis; however the extent of this impact may be determine on the species' dependency on light.