Prime Numbers Prime numbers and their properties were first studied extensively by the ancient Greek mathematicians. The mathematicians of Pythagoras's school (500 BC to 300 BC) were interested in numbers for their mystical and numerological properties. They understood the idea of primality and were interested in perfect and amicable numbers. A perfect number is one whose proper divisors sum to the number itself. e.g. The number 6 has proper divisors 1, 2 and 3 and 1 + 2 + 3 = 6, 28 has divisors 1, 2, 4, 7 and 14 and 1 + 2 + 4 + 7 + 14 = 28. A pair of amicable numbers is a pair like 220 and 284 such that the proper divisors of one number sum to the other and vice versa. You can see more about these numbers in the History topics …show more content…
In Book IX of the Elements, Euclid proves that there are infinitely many prime numbers. This is one of the first proofs known which uses the method of contradiction to establish a result. Euclid also gives a proof of the Fundamental Theorem of Arithmetic: Every integer can be written as a product of primes in an essentially unique way. Euclid also showed that if the number 2n - 1 is prime then the number 2n-1(2n - 1) is a perfect number. The mathematician Euler (much later in 1747) was able to show that all even perfect numbers are of this form. It is not known to this day whether there are any odd perfect numbers. In about 200 BC the Greek Eratosthenes devised an algorithm for calculating primes called the Sieve of …show more content…
This states that if p is a prime then for any integer a we have ap = a modulo p. This proves one half of what has been called the Chinese hypothesis which dates from about 2000 years earlier, that an integer n is prime if and only if the number 2n - 2 is divisible by n. The other half of this is false, since, for example, 2341 - 2 is divisible by 341 even though 341 = 31 11 is composite. Fermat's Little Theorem is the basis for many other results in Number Theory and is the basis for methods of checking whether numbers are prime which are still in use on today's electronic computers. Fermat corresponded with other mathematicians of his day and in particular with the monk Marin Mersenne. In one of his letters to Mersenne he conjectured that the numbers 2n + 1 were always prime if n is a power of 2. He had verified this for n = 1, 2, 4, 8 and 16 and he knew that if n were not a power of 2, the result failed. Numbers of this form are called Fermat numbers and it was not until more than 100 years later that Euler showed that the next case 232 + 1 = 4294967297 is divisible by 641 and so is not
On the afternoon of April 10, 1815 an event occurred that would change the lives of many people. This event was forevermore engraved in the history books and remembered as the eruption felt around the world. On this day Mount Tambora exploded killing thousands of lives, and destroying the entire surrounding environment, and is still known to this day as the most powerful volcano eruption in history.
Euclid’s Elements are predominantly the most fundamental concepts of mathematics, but his perspective on geometry was the model for over two millennia. He is believed by many to be the leading mathematics teacher of all time. However, little is known about his life outside of mathematics, or even when he was born or when he died. According to a passage written by Proclus, Euclid probably lived after Ptolemy and the pupils of Plato, but came before Archimedes and Eratosthenes. This places his existence sometime around 300 B.C. Euclid is most famous for having set the guidelines for geometry and arithmetic written in Euclid’s Elements, a series of thirteen books in which Euclid states definitions, postulates, and theorems for mathematical concepts that are still used today. What is most remarkable about the Elements is the simple, rational, and very logical structure in which Euclid presents the accumulated geometrical knowledge from the past several centuries of Greek mathematicians. The manner in which the propositions have been derived is considered to be the prime model of the axiomatic method. (Hartshorne 296).
One of the most well known contributors to math from Greece would be Archimedes. He
A prime number is an integer with only positive divisors one and itself. The ancient Greeks proved that there where infinitely many primes and that they where irregularly spaced. Mersenne examined prime numbers and wanted to discover a formula that would represent all primes. The formula is (2p-1) where p is a known prime number. Mersenne claimed that if a number n=(2p-1) is prime then p=2,3,5,7,13,17,31,67,127, and 257, but composite for the other forty-four primes smaller than or equal to 257. He was wrong about five primes less than or equal to 257. He claimed 67 and 257 had a p that was prime and he also missed three that did have a p that was prime. He would never be able to accomplish the task of creating a formula to represent all prime numbers; however the form he created is still used today when searching for large prime numbers.
Johann Carl Friedrich Gauss was a well-known scientist, astronomer, and mathematician from Brunswick, Germany. Born on April 30, 1777, to a father, who was a gardener and brick layer, and an illiterate mother. Gauss was sent to the Collegium Carolinium by the duke of Braunschweig, where he attended from 1792 to 1795. From 1795 to 1798, Carl attended the University of Gottingen. While attending the university, he kept independently rediscovering several important theorems. In 1796, Gauss showed what he was capable of. He was capable of showing that “any regular polygon, each of whose odd factors are distinct Fermat primes, can be constructed by ruler and compass alone,” thereby adding to the work of the Greek mathematicians before him. On March 30 of 1796, the German mathematician discovered a construction of the heptadecagon, and the quadratic reciprocity law on April 8th of the same year. At the end of May 1796, Carl conjectured the prime number theorem. In July of that year he also revealed that every positive integer can be expressed as a sum of at most three triangular numbers. A...
Pierre de Fermat Pierre de Fermat was born in the year 1601 in Beaumont-de-Lomages, France. Mr. Fermat's education began in 1631. He was home schooled. Mr. Fermat was a single man through his life. Pierre de Fermat, like many mathematicians of the early 17th century, found solutions to the four major problems that created a form of math called calculus. Before Sir Isaac Newton was even born, Fermat found a method for finding the tangent to a curve. He tried different ways in math to improve the system. This was his occupation. Mr. Fermat was a good scholar, and amused himself by restoring the work of Apollonius on plane loci. Mr. Fermat published only a few papers in his lifetime and gave no systematic exposition of his methods. He had a habit of scribbling notes in the margins of books or in letters rather than publishing them. He was modest because he thought if he published his theorems the people would not believe them. He did not seem to have the intention to publish his papers. It is probable that he revised his notes as the occasion required. His published works represent the final form of his research, and therefore cannot be dated earlier than 1660. Mr. Pierre de Fermat discovered many things in his lifetime. Some things that he did include: -If p is a prime and a is a prime to p then ap-1-1 is divisible by p, that is, ap-1-1=0 (mod p). The proof of this, first given by Euler, was known quite well. A more general theorem is that a0-(n)-1=0 (mod n), where a is prime...
Ms. Robinson and Matiyasevich soon solved many more problems into Ms. Robinson’s death. Right after Ms. Robinson died Yuri Matiyasevich worked with his friend Boris Stechkin they both created a ceive which sooner or later crossed out all the composite numbers leaving only the prime in a easier and high fashion way. Sooner or later Mr. Matiyasevich had many things named after him, but the most important thing to him was the way he helps Ms. Robinson and made the sieve. Mr. Matiyasevich was something that no one understood. He was 22 when he first solved Ms. Robinsons problem. He was a great prodigy that why he has so many awards and most people look up to
Fermat’s Last Theorem--which states that an + bn = cn is untrue for any circumstance in which a, b, c are not three positive integers and n is an integer greater than two—has long resided with the collection of other seemingly impossible proofs. Such a characterization seems distant and ill-informed, seeing as today’s smartphones and gadgets have far surpassed the computing capabilities of even the most powerful computers some decades ago. This renaissance of technology has not, however, eased this process by any means. By remembering the concept of infinite numbers, it quickly becomes apparent that even if a computer tests the first ten million numbers, there would still be an infinite number of numbers left untested, ultimately resulting in the futility of this attempt. The only way to solve this mathematic impossibility, therefore, would be to create a mathematic proof by applying the work of previous mathematicians and scholars.
It is doubtless that Archimedes was the greatest geometer of his time, and he has not been paralleled since then. To imagine just how much knowledge he discovered, and the amount of intelligence he must have had to discover it, is practically impossible. "Archimedes' contributions to mathematical knowledge were diverse" (Galenet 1). He discovered the concepts of Pi, the area of a circle, wrote principles on plane/solid geometry, and developed a somewhat rudimentary form of calculus.
Although little is known about him, Diophantus (200AD – 284AD), an ancient Greek mathematician, studied equations with variables, starting the equations of algebra that we know today. Diophantus is often known as the “father of algebra” ("Diophantus"). However, many mathematicians still argue that algebra was actually started in the Arab countries by Al Khwarizmi, also known as the “father of algebra” or the “second father of algebra”. Al Khwarizmi did most of his work in the 9th century. Khwarizmi was a scientist, mathematician, astrologer, and author. The term algorithm used in algebra came from his name. Khwarizmi solved linear and quadratic equations, which paved the way for algebra problems that are now taught in middle school and high school. The word algebra even came from his book titled Al-jabr. In his book, he expanded on the knowledge of Greek and Indian sources of math. His book was the major source of algebra being integrated into European disciplines (“Al-Khwarizmi”). Khwarizmi’s most important development, however, was the Arabic number system, which is the number system that we use today. In the Arabic number system, the symbols 1 – 9 are used in combination to ...
Historically speaking, ancient inventors of Greek origin, mathematicians such as Archimedes of Syracuse, and Antiphon the Sophist, were the first to discover the basic elements that translated into what we now understand and have formed into the mathematical branch called calculus. Archimedes used infinite sequences of triangular areas to calculate the area of a parabolic segment, as an example of summation of an infinite series. He also used the Method of Exhaustion, invented by Antiphon, to approximate the area of a circle, as an example of early integration.
By 1904 Ramanujan had begun to undertake deep research. He investigated the series (1/n) and calculated Euler's constant to 15 decimal places. He began to study the numbers, which is entirely his own independent discovery.
Euclid of Alexandria was born in about 325 BC. He is the most prominent mathematician of antiquity best known for his dissertation on mathematics. He was able to create “The Elements” which included the composition of many other famous mathematicians together. He began exploring math because he felt that he needed to compile certain things and fix certain postulates and theorems. His book included, many of Eudoxus’ theorems, he perfected many of Theaetetus's theorems also. Much of Euclid’s background is very vague and unknown. It is unreliable to say whether some things about him are true, there are two types of extra information stated that scientists do not know whether they are true or not. The first one is that given by Arabian authors who state that Euclid was the son of Naucrates and that he was born in Tyre. This is believed by historians of mathematics that this is entirely fictitious and was merely invented by the authors. The next type of information is that Euclid was born at Megara. But this is not the same Euclid that authors thought. In fact, there was a Euclid of Megara, who was a philosopher who lived approximately 100 years before Euclid of Alexandria.
Pythagoras made multiple contributions to math. He also contributed to science and philosophy. His contributions are seen as important today because they act as stepping stones in solving different problems.
Prime numbers have been of interest to mathematicians for centuries, and we owe much of our existing knowledge on the subject to thinkers who lived well before the Common Era––such as Euclid who demonstrated that there are infinitely many prime numbers around 300 BCE. Yet, for as long as primes have been an element of the mathematician’s lexicon, many questions about prime numbers remain unreso...