The Characteristics Of Alhazen, The Book Of Optics

895 Words2 Pages

Alhazen's most famous work[48] is his seven-volume treatise on optics Kitab al-Manazir (Book of Optics), written from 1011 to 1021. Optics was translated into Latin by an unknown scholar at the end of the 12th century or the beginning of the 13th century.[49] It was printed by Friedrich Risner in 1572, with the title Opticae thesaurus: Alhazeni Arabis libri septem, nuncprimum editi; Eiusdem liber De Crepusculis et nubium ascensionibus (English : Thesaurus of Optics: seven books of the Arab Alhazeni, first edition: concerning twilight and the advancement of clouds).[50] Risner is also the author of the name variant "Alhazen"; before Risner he was known in the west as Alhacen, which is the correct transcription of the Arabic name.[51] This work …show more content…

The illustration incorporates many examples of optical phenomena including perspective effects, the rainbow, mirrors, and …show more content…

The first theory, the emission theory, was supported by such thinkers as Euclid and Ptolemy, who believed that sight worked by the eye emitting rays of light. The second theory, the intromission theory supported by Aristotle and his followers, had physical forms entering the eye from an object. Previous Islamic writers (such as al-Kindi) had argued essentially on Euclidean, Galenist, or Aristotelian lines. The strongest influence on the Book of Optics was from Ptolemy's Optics, while the description of the anatomy and physiology of the eye was based on Galen's account.[53] Alhazen's achievement was to come up with a theory that successfully combined parts of the mathematical ray arguments of Euclid, the medical tradition of Galen, and the intromission theories of Aristotle. Alhazen's intromission theory followed al-Kindi (and broke with Aristotle) in asserting that "from each point of every colored body, illuminated by any light, issue light and color along every straight line that can be drawn from that point".[54] This however left him with the problem of explaining how a coherent image was formed from many independent sources of radiation; in particular, every point of an object would send rays to every point on the eye. What Alhazen needed was for each point on an object to correspond to one point only on the eye.[55] He attempted to resolve this by asserting that the eye would only perceive perpendicular

Open Document