6.03 Calorimetry Lab

483 Words1 Page

For part C, the concentration of was determined to be 1.01 mol/L, 0.973 mol/L, and 1.158 mol/L. These results show a relatively closed to the accepted 1.00mol/L of NaOH. The differences of these results are understandable since the concentration of NaOH would changes over time because during the transfer of NaOH powder in part A, it was exposed to the air, thus it could reacts with CO2 in the atmosphere to produce Na2CO3 and water, therefore, changing the concentration of NaOH. Furthermore, the NaOH could also react with the glass thus it wills also reducing its concentration. However, all of the concentration of NaOH that was determine are maximum of 0.158mol/L differences compare to the standard 1.00 mol/L, therefore, it can be concluded that the result are accurate. …show more content…

On the lid of the calorimeter, there were two holes and one was being used for the thermometer, and the second one was left open. This hole could have let heat to escape as the reaction was taking place which would have lowered the final temperature value. These conditions would have led to a lower final temperature value. To prevent even the slightest anomalies in the future, any holes on the calorimeter can be covered by tape or another item that could block the passage. The top of the calorimeter could also be covered with aluminum and this would not only cover the holes but would secure the space under the lid so any heat that may escape would stay within the area due to the aluminum. Aluminum could also be tucked in the space between the lid and the calorimeter to once again lock the heat in. This way, the calorimeter will be more effective and maintain all the heat of the reaction resulting in values that are completely accurate and decreasing even the slightest

Open Document